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If we take the Laurent expansion of the Riemann zeta function about s =1
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which defines 7, the Stieltjes constants, where ~y is the Euler-Mascheroni constant. Next perform a series
reversion on this to give a series
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which has expansion
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The coefficients x(n) seem to decrease quite steadily, even up n being a few hundred, where the v,, get large.

Letting
n
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and {i}, = {i1,42,---|P =n — 1}, I have observed the expression for x(n) from series reversion to be
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where we define x(0) = 1. Two examples
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We can conjecture that
k(n+1) < k(n), neN>0?

Is this perhaps a more well behaved way to look at the Stieltjes constants?



n k(n)

0 1.000000000
1 1.000000000
2 0.5772156649
3 0.4059937693
4 | 0.3135616752
) 0.2556464523
6 0.2159181431
7 0.1869526867
8 0.1648872027
9 0.1475121704
10 | 0.1334717457
11 | 0.1218874671
12 | 0.1121649723
13 | 0.1038876396
14 | 0.09675470803
15 | 0.09054358346

Table 1: The first 16 coefficients of the inverse function.



