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I. Abstract

The Interval Sieve Algorithm is a method for generating a list of real numbers on any closed interval of real
numbers [ri, rj] where ri < rj. Georg Cantor in his 1891 paper demonstrated a constructive proof that the
real numbers are uncountable. Cantor developed a method for showing how a particular objective cannot be
accomplished; in this case, establishing a one to one correspondence between the natural numbers and the
real numbers, using his diagonal argument.

What Cantor didn’t show is that there are no ways of demonstrating a one to one correspondence between
the natural numbers and the real numbers. This is important because even if one can demonstrate one or
more ways that something cannot be done, it is only necessary to develop one way that shows how it can be
done to invalidate the ways that show it cannot.

The interval sieve algorithm partitions a closed interval of real numbers [ri, rj] where ri < rj to create a
complete list, L, of numbers in the interval. We will prove that the list L is complete, and derive the bijective
function f : N - [r1, r2].

II. Definitions

1. The lower bound of an interval is the leftmost member of the interval. In the interval [r1, r2], r1 is the
lower bound of the interval.

2. The upper bound of an interval is the rightmost member of the interval. In the interval [r1, r2], r2 is
the upper bound of the interval.

3. Given the set, S = {1, 2, 3}. We define a closed interval of the set as IS = [1, 3] where both upper and
lower bounds are included in the interval.
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4. Given the set, S = {1, 2, 3}. We define an open interval of the set as IS = (1, 3) where the upper and
lower bounds are excluded from the interval.

5. Given the set, S = {1, 2, 3}. We define a lower open interval of the set as IS = (1, 3] where the lower
bound is excluded from the interval and the upper bound is included in the interval.

6. Given the set, S = {1, 2, 3}. We define an upper open interval of the set as IS = [1, 2) where the lower
bound is included in the interval and the upper bound is excluded from the interval.

7. A conjoined interval pair is a pair of intervals where the upper bound of one and the lower bound of
the other are the same member. [ri, [rk,] rj] is an example of a conjoined interval pair where rk is both the
upper bound of [ri, rk], the lower bound of [rk, rj] and ri < rk < rj.

8. A relative bound is the number that is common to both intervals in a conjoined interval pair. In the
conjoined interval pair [r1, [r3,] r2], r3 is the relative bound in both intervals [r1, r3] and [r3, r2].

9. An interval of a set may be partitioned by creating a conjoined interval pair per definition 7 and then
splitting the conjoined interval pair into sub-intervals with the relative bound being the upper bound of one
sub-interval and the lower bound of the other sub-interval.

Example:

S = {1, 2, 3}

IS = [1, 3] (IS is read the interval I on set S)

Partition IS as follows -

IS = [1, 3]

= [1, [2], 3]

= [1, 2], [2, 3]

10. When no sub-intervals can be further subdivided then the interval is called fully partitioned.

11. The immediate predecessor of a number λ is a number β such that there exists no number δ where

β < δ < λ.

12. The immediate successor of a number λ is a number β such that there exists no number δ where

λ < δ < β.

13. For any 2 real numbers λ and β in [r1, r2], we can always find another real number, δ, such that if λ > β
then β < δ < λ and if λ < β then λ < δ < β. Therefore from definitions 11 and 12 we know that there are

no immediate predecessors or successors of any of the elements of [r1, r2]; that is, [r1, r2] is a continuum.

III. The Interval Sieve Algorithm

Procedure:
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Figure 1: Process Flowchart

0. We begin the procedure given the interval [r1, r2] where r1 < r2 and r1, r2 are real numbers and the list

L = (r1, r2).

1. If there are intervals that can be sub-divided next step else stop..

2. Sub-divide each interval [ri, rj] by selecting a number rk such that ri < rk < rj to get a conjoined interval
pair [ri, [rk,] rj]

3. Insert the relative bound number, rk, into the list L to get L = (ri, rk, rj).

4. Form new sub-intervals [ri, rk], [rk, rj].

5. Return to step 1.

IV. Partitioning Intervals Using the Algorithm

We will use the partitioning of a set interval according to the algorithm as a method for creating a list of the
elements of the interval. Partitioning allows us to construct a list whereby all the elements of the interval
will be included in the list.

Below are two examples of partitioning set intervals.

Example 1 -

Let:

S = {1, 2, 3, 4, 5}

IS = [1, 5]
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First we note that in defining the interval [1, 5] we have specified the first two elements of the list L. That is
L = (1, 5). To continue populating L, partition [1, 5], adding each relative bound to L as it is created, and
continue the process until no intervals are left that can be partitioned.

IS = [1, 5] L = (1, 5)

= [1, [3], 5] L = (1, 3, 5)

= [1, 3], [3, 5]

= [1, [2], 3], [3, [4], 5] L = (1, 2, 3, 4, 5)

= [1, 2], [2, 3], [3, 4], [4, 5]

Since no interval in IS can be further subdivided the interval is fully partitioned and L is complete.

Example 2 -

Let:

S = {1, 2, 3, . . . ω} where ω is the first infinite ordinal number.

IS = [1, ω)

Partition the interval [1, ω) to create a list L of natural numbers.

IS = [1, ω) L = (1)

= [1, [2], ω) L = (1, 2)

= [1, 2], [2, ω)

= [1, 2], [2, [3], ω) L = (1, 2, 3)

= [1, 2], [2, 3], [3, ω)

. . . . . .

Taking the procedure to its limit will create a list of all the natural numbers, L = (1, 2, 3, . . . ). Since IS is
defined as an upper open interval, ω is not included in L.

V. Creating L over [r1, r2] where r1, r2 are Real Numbers

Let:

S = {R}

IS = [r1, r2] where r1 < r2

Partition IS to create the list L of real numbers between r1 and r2.

IS = [r1, r2] L = (r1, r2)

= [r1, [r3], r2] L = (r1, r3, r2)

= [r1, r3], [r3, r2]

= [r1, [r4], r3], [r3, [r5], r2] L = (r1, r4, r3, r5, r2)

= [r1, r4], [r4, r3], [r3, r5], [r5, r2]

= [r1, [r6], r4], [r4, [r7], r3], [r3, [r8], r5], [r5, [r9], r2] L = (r1, r6, r4, r7, r3, r8, r5, r9,
r2)
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= [r1, r6], [r6, r4], [r4, r7], [r7, r3], [r3, r8], [r8, r5], [r5, r9], [r9, r2]

. . . . . .

At the limit of the process, L will appear as follows: L = (r1,. . . r6,. . . r4,. . . r7,. . . r3,. . . r8,. . . r5,. . . r9,. . . r2).

By definition 13 there are no immediate predecessors or successors in [r1, r2]. It follows that the partitioning
of sub-intervals of [r1, r2] can go on indefinitely. Also, except for r1 and r2, every number in the original
interval must, at some point during the process, become a relative bound and only then added to L. And
because no number will be a relative bound more than once, there will be no duplicates in L.

As can be seen in the examples above, each relative bound becomes the lower bound of one sub-interval and
the upper bound of another sub-interval. This means that every number in the each sub-interval will be
approached from left below and right its value and the interval lengths will become infinitesimally small.

Example 3, using numbers:

Let:

S = {R}

IS = [1, 4]

Partition IS to create the list L of real numbers between 1 and 4.

IS = [1, 4] L = (1, 4)

= [1, [π], 4] Λ = (1, π, 4)

= [1, π], [π, 4]

= [1, [e], π], [π, [3.2], 4] L = (1, e, π,
3.2, 4)

= [1, e], [e, π], [π, 3.2], [3.2, 4]

= [1, [[?]2], e], [e, [3], π], [π, [3.15], 3.2], [3.2, [3.3], 4] L = (1, [?]2, e, 3, π,
3.15, 3.2, 3.3, 4)

= [1, [?]2], [[?]2, e], [e, 3], [3, π], [π, 3.15], [3.15, 3.2], [3.2, 3.3], [3.3, 4]

. . .

At the limit of the process L = (1,. . . [?]2,. . . e,. . . 3,. . . π,. . . 3.15,. . . 3.2,. . . 3.3,. . . 4).

VI. Proving the List L is Complete

The question remains as to whether or not the list L will contain all real numbers in [r1, r2]. We will prove
that: All the real numbers in [r1, r2] are contained in the list L.

Proof by Construction/Contradiction: Create a number X such that r1 < X < r2 and assume that X [?] L.
Demonstrate that ‘r1 < X < r2 and that X [?] L’ leads to a contradiction.

To create X we employ Cantor’s diagonal method:

Row [r1, r2]
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1 .d1 d2 d3 d4 d5 d6 d7 . . .
2 .d1 d2 d3 d4 d5 d6 d7 . . .
3 .d1 d2 d3 d4 d5 d6 d7 . . .
4 .d1 d2 d3 d4 d5 d6 d7 . . .
5 .d1 d2 d3 d4 d5 d6 d7 . . .
6 .d1 d2 d3 d4 d5 d6 d7 . . .
7 .d1 d2 d3 d4 d5 d6 d7 . . .

. . .
X = .b1 b2 b3 b4 b5 b6 b7 . . .

Each bi of X differs from each number in the list at di. Using the diagonal method we have created a number
X such that r1 < X < r2 and X [?] L (Cantor’s proof).

1. Since X is an element of [r1, r2] we can rewrite [r1, r2] as [r1, . . . X, . . . r2].

2. We can now select X as the first cut point in the partitioning of [r1, r2] and form the relative bound of
the conjoined interval pair [r1, [X], r2].

3. Once X is designated a relative bound it will be inserted into L per the algorithm and we’ll have

L = (r1, X, r2).

4. Having shown that X [?] L, we can say that the original assertion, X [?] L, leads to a contradiction and
must be false.

5. Since the list of [r1, r2] created using the diagonal method was lacking X, and we have shown that by
partitioning [r1, r2] using the interval sieve includes X as a member of the list of [r1, r2] we can assert that,
at the limit, L will be complete and this ends the proof.

VII. Derivation of f : N - [r1, r2]

We will now demonstrate that there exists a bijective function from N to [r1, r2], f : N - [r1, r2].

We have used the Interval Sieve Algorithm to create: L = (r1,. . . r6,. . . r4,. . . r7,. . . r3,. . . r8,. . . r5,. . . r9,. . . r2)

and have proved L is complete. It is readily apparent that for every r in the list there is an associated natural
number subscript. Since L is complete, containing all numbers in [r1, r2] and each number in L is associated
with a single unique natural number we can assert that f : N - [r1, r2] exists.

The existence of f : N - [r1, r2] confirms a one to one correspondence between the natural numbers and any
closed interval of real numbers.

VIII. Final Thoughts

The fact that we have shown the existence of f : N - [r1, r2] implies that Cantor’s continuum hypothesis is
true for closed intervals of real numbers. Interestingly, it’s not that there are no infinite sets with cardinality
between 0 and 1, rather N and [r1, r2] turn out to be the same size.
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