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Abstract

We consider the values of residues of functions. We know the residues of some functions at their poles. For
example

Res(Γ(s),−k) =
(−1)k

k!
, k ∈ Z

but then some functions are hard, for example

Res(eΓ(s),−k) =?

if we consider a series expansion of eΓ[s], we get terms

Res

(
n∑

l=0

Γ(s)l

l!
,−k

)

for some such expansions it appears that there is a convergent limit, for large n. i.e.

lim
n→∞

Res

(
n∑

l=0

Γ(s)l

l!
, s = 0

)
≈ 0.80562017...

and

lim
n→∞

Res

(
n∑

l=0

Γ(s)l

l!
, s = −1

)
≈ −1.21469623...

If we call this

Q[eΓ(s)](k) = lim
n→∞

Res

(
n∑

l=0

Γ(s)l

l!
, s = −k

)
then we could define a function

f(x) =

∞∑
k=0

Q[eΓ(s)](k)xk ≈ 0.806− 1.215x + 1.02621x2 − 0.13931294x3 + 0.04446964782x4 − ... (1)

where interestingly, the higher terms are more precise with only a few terms required in the truncated version
of Q.

For the function f(x), it seems like the minimum is around x0 = 0.658734 with a value of v = 0.418402, with
some likely bounds 0.401076 < v < 0.454371 and 0.62907 < x0 < 0.726154.
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