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Abstract1

Microbial community analysis via marker gene amplicon sequencing has become a routine method in the field of soil2

research. In this perspective, we discuss technical challenges and limitations of amplicon sequencing studies in soil and3

present statistical and experimental approaches that can help addressing the spatio-temporal complexity of soil and the4

high diversity of organisms therein. We illustrate the impact of compositionality on the interpretation of relative abundance5

data and discuss effects of sample replication on the statistical power in soil community analysis. Additionally, we argue6

for the need of increased study reproducibility and data availability, as well as complementary techniques for generating7

deeper ecological insights into microbial roles and our understanding thereof in soil ecosystems. At this stage, we call upon8

researchers and specialized soil journals to consider the current state of data analysis, interpretation and availability to9

improve the rigor of future studies.10

11

Highlights12

• Soil complexity necessitates careful interpretation of sequencing data13

• Studies often do not account for data compositionality, leading to misinterpretation14

• Functions should not be inferred from phylogeny as they are rarely conserved15

• We discuss complementary approaches that help to improve ecological insights16

• We call for journals and authors to improve study reproducibility and data availability17
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1. Introduction21

Soil is one of the most biologically diverse and heterogeneous ecosystems, presenting unique challenges22

to scientists in the fields of soil and microbial ecology (Bickel and Or, 2020). The critical role of mi-23

croorganisms as drivers of biogeochemical processes is well-documented, and a major goal of soil ecology24

remains to decipher the link between the diversity of soil microbial communities, and their function in the25

environment (Hinsinger et al., 2009; Manzoni et al., 2012). Historically, studies of microbial communities26

revealed rather a narrow perspective of the diversity by targeting mainly cultivable bacteria, taxa of high27

abundance, or microorganisms grouped according to morphological or physiological properties (Staley28

and Konopka, 1985; Steen et al., 2019; Åsa Frosteg̊ard et al., 2011). The introduction of next-generation29

sequencing technologies such as amplicon sequencing has revolutionized our understanding of micro-30

bial diversity by enabling the investigation of community composition at a much greater phylogenetic31

resolution than ever before.32

Amplicon sequencing (also termed metabarcoding) is based on PCR-amplification of variable regions33

of DNA within conserved phylogenetic or functional marker genes (Go lębiewski and Tretyn, 2019; Se-34

menov, 2021) - see also supplementary Table S1 for examples. The accessibility of established assays, the35

affordability, as well as the availability of free analysis software packages have facilitated the broad use of36

amplicon sequencing for characterization of the microbiological diversity in environmental samples (Ca-37

poraso et al., 2012). In the field of soil science, its application has accelerated in the last decade as38

evidenced by the growing number of studies published in specialized soil journals (Fig. 1). The majority39

of these manuscripts report the analysis of soil community composition and diversity based on phyloge-40

netic marker genes such as the 16S rRNA gene for bacteria and archaea as well as internal transcribed41

spacer (ITS) regions for fungi. In addition, functional genes can be targeted to obtain information on42

the organism that may contribute to a specific environmental process (Angel et al., 2018; Séneca et al.,43

2020; Aigle et al., 2020).44

Such work has enabled researchers to successfully investigate the composition and dynamics of soil45

microbial communities. Our understanding of microbial diversity has increased dramatically and the46

activity of microbial communities has now been widely recognized as central in the field of soil science47

where research questions were historically often tackled from the perspective of individual disciplines such48

as chemistry, physics, and biology (Baveye et al., 2018). As evident by the high number of studies being49

published in recent years, it is safe to say that microbial community analysis via marker-gene sequencing50

has become a standard tool in soil research. At this stage, it is necessary to discuss potentials, challenges,51

and pitfalls of the technique applied by soil scientists.52

In this perspective, we aim to describe the unique challenges of studying microbial communities in53

soil ecosystems, and to address common misconceptions in the analysis and interpretation of amplicon54

sequencing data. Patterns often arise in community data, but the interpretation of these patterns in a55

soil context remains challenging and limited due to the poor link between the sequenced marker gene56

2
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regions and microbial functions, as well as the compositional nature of the data itself (Blanchet et57

al., 2020). We provide suggestions for designing sequencing experiments and analyzing data to gain58

improved insights into microbial community structure and dynamics within the context of the complex59

soil environment. Amplicon sequencing, when used as part of a well-designed experiment, represents60

an informative approach for investigating microbial community structure and correlations between taxa61

and environmental parameters, as well as for developing new hypotheses regarding microbial community62

dynamics.

Figure 1: Increase in the number of articles using amplicon sequencing in soil microbiome research pub-
lished in soil science journals (as defined in Web of Science, www.webofknowledge.com). Bars represent
the total number of articles using amplicon sequencing, whereas the blue points and line represent their
percentage of the total number of articles published in those journals per year from 1990 to 2020. The
pie chart represents the number of articles in the top ten contributing soil science journals in 2020 (as
total number of articles). Numbers inside the chart represent the number of articles using amplicon
sequencing (only reported for the top three journals), while the numbers outside the chart represent the
percentage of the total number of articles for each journal. See Supplementary file for a more detailed
description of methods and the complete list of journals (Table S2).

63

2. Technical considerations in a heterogeneous and diverse habitat64

The diversity of microorganisms in soil has been well-documented as a major challenge in studying65

soil microbial communities (Gans, 2005; Fierer and Jackson, 2006). A single gram of soil is estimated66

to contain 108-109 cells (Bloem et al., 1995; Nunan et al., 2001) and tens of thousands of microbial67

taxa (Roesch et al., 2007). Additionally, compared to host-associated microbiomes (e.g., gut, skin, or68

plant root microbiome), free-living bacteria exhibit higher levels of diversity. In a recent comparison69

of alpha-, beta- and gamma-diversity from samples collected as part of the Earth Microbiome Project70

3
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(EMP), soils were determined to have the highest alpha-diversity across all environments (Walters and71

Martiny, 2020). In terms of beta- and gamma-diversity, soil came in second only to sediment samples.72

Fewer studies have investigated the diversity and global distribution of fungi (Tedersoo et al., 2014;73

Větrovský et al., 2019). These studies indicate that more heterogeneous environments, such as soils and74

sediments, may contain more diverse fungal communities that more homogeneous habitats (e.g., marine,75

freshwater, air, biofilms) (Fierer and Lennon, 2011; Walters and Martiny, 2020; Torsvik, 2002).76

In addition to high biological diversity, researchers interested in the microbial composition of soils are77

confronted with technical challenges throughout the sample processing workflow. The general workflow78

of amplicon sequencing includes: 1) planning and implementation of the experimental design, 2) nucleic79

acid extraction (influcing quality control) 3) primer choice, PCR amplification, sequencing, 4) processing80

and analysis of sequence data, and 5) data interpretation (Fig. 2). At each of these steps, a subset of81

the sample is selected and information can be lost as a result of the techniques applied (i.e., nucleic acid82

extraction method, primer selection, statistical approaches), with consequences for data interpretation83

in the context of ecological questions (Morton et al., 2019; McLaren et al., 2019). As with any scientific84

experiment, the specific hypotheses to be addressed should determine the experimental design. Besides85

this, in experiments involving amplicon sequencing, one must consider the appropriate spatial scale (i.e.,86

aggregate/microscale, centimetre scale, meter scale) and the frequency of sampling in order to address87

specific questions regarding community dynamics. While the sample that is sequenced represents the88

specific moment in time when it was frozen or extracted, the presence of exogenous or relic DNA in89

soil samples has the potential to influence community composition and downstream data interpretation90

((Lennon et al., 2018; Carini et al., 2016); discussed in section 5). Additionally, sample replication91

remains a critical concern in soil studies, particularly when it comes to statistical inference and/or92

construction of co-occurrence networks (discussed in sections 5 and 6).93

The physicochemical properties of soils make nucleic acid extraction from this matrix particularly chal-94

lenging. Numerous extraction protocols and kits have been developed to circumvent challenges with95

DNA extraction from soil, however, each method introduces distinct bias on the subset of the microbial96

community retrieved (Terrat et al., 2011; Zielińska et al., 2017; Dopheide et al., 2018). The presence97

of inhibitors, such as humic substances, is common in soil and can reduce the quality and purity of98

nucleic acids in the extracted samples and decrease the efficiency of reverse transcription and/or PCR99

reactions (Schrader et al., 2012). In addition to the nucleic acid extraction method of choice (chemical100

or physical lysis, DNA and/or RNA extraction), primer selection dictates the organisms or functions101

targeted by the approach (phylogenetic or functional marker; see Table S1). Finally, due to the diversity102

and heterogeneity of soil samples the resulting data is often sparse, containing numerous taxa with low103

abundance and prevalence which may be dealt with through filtering thresholds or statistical approaches104

(see section 3). The loss of information at each step of the process - from sampling to analysis - must105

be carefully considered in light of amplicon sequencing data interpretation. Keeping all these factors in106

mind, the application of sequencing technologies to soil has provided invaluable information regarding107

the structure and critical nature of understanding microbial communities.108

4
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Figure 2: The main steps of an amplicon sequencing analysis workflow. Italicized items represent critical
points that may strongly influence the robustness and direction of the results.

3. Challenges in amplicon sequence data analysis109

3.1. Primer selection dictates phylogenetic coverage110

As choice of primers can influence the taxa observed in an amplicon sequencing dataset, it is of utmost111

importance to take care with regard to primer selection and the interpretation of resulting data as to112

the community changes/impacts of treatments. Given the high diversity of soil communities (of which113

the understanding is constantly growing due to massive sequencing efforts), no primer pair will cover114

the complete phylogenetic breadth on a high rank such as domain (e.g., bacteria, archaea, fungi). As a115

consequence, part of the communities will always be missing. This is inevitable but it is of particular116

concern when studies attribute soil functions to taxa found to be “rare” in their amplicon sequencing117

data due to low coverage of that group (Chen et al., 2020). Nevertheless, evaluated and recommended118

primer pairs are available including the updated versions of 515F-806R primers for surveys of archaea119

and bacteria (e.g., https://earthmicrobiome.org/). Primer selection is even more challenging for120

studies of eukaryotes, owing to hypervariable sequence lengths and multiple gene copy numbers (due121

to multiple operons and/or polykaryosis) that contribute to biased amplification of some phylogenetic122

groups during PCR. This bias may for example lead to the under-estimation of some fungal groups,123

having a downstream effect on diversity estimates (Baldrian et al., 2021). Arbuscular mycorrhizal fungi124

for instance are largely overlooked by commonly used ITS primers which could lead investigators to infer125

that arbuscular mycorrhizal fungi are rare (George et al., 2019). A promising alternative to ITS-targeted126

short-read sequencing is the use of long-read sequencing (e.g., PacBio) which enables the investigation127

of most fungi (including Glomeromycota) and other soil eukaryotes through covering both the full ITS128

5
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region and part of the small subunite of the rRNA gene (Tedersoo and Anslan, 2019; Tedersoo et al.,129

2020). We refer readers to in-depth reviews that further discuss challenges regarding amplicon sequencing130

of fungi specifically, including discussion of primer selection and coverage (Nilsson et al., 2019; Baldrian131

et al., 2021).132

The choice of primers has substantial impacts on estimates of diversity in community studies. As a133

consequence, we urge researchers to use tools such as TestPrime (https://www.arb-silva.de/search/134

testprime/) to evaluate the current status of the coverage of their target microbial groups of interest135

before sequencing and to discuss this aspect in their publications. We also recommend that reviewers136

critically assess the coverage of the target group of organisms used in a study to improve future evaluation137

of sequencing-based research in soil ecology.138

3.2. Compositionality necessitates careful data processing139

One of the first steps in the analysis of amplicon sequencing data is the removal of potential sequencing140

errors. Doing so eliminates sequencing artefacts that may falsely boost diversity levels (Edgar et al.,141

2011; Haas et al., 2011). The use of amplicon sequencing variants (ASVs), instead of operational taxo-142

nomic units (OTUs) helps to overcome this issue by assigning a greater probability of a true biological143

sequence being more abundant than an error-containing sequence (Callahan et al., 2017). To that end,144

bioinformatic tools such as DADA2 (Callahan et al., 2016) and Deblur (Amir et al., 2017) attempt to145

use sequencing error profiles to resolve amplicon sequencing data into ASVs. An ASV is more likely to146

have an intrinsic biological meaning (i.e., being a true DNA sequence), as opposed to an OTU which can147

either be a representation of the most abundant biological sequence or a consensus sequence (of which148

the latter may not exist in reality). In addition, ASVs facilitate the merging of datasets, particularly149

when the same sequencing primer pairs are used.150

Another relevant step when analyzing sequencing data is to account for the different sequencing efforts151

across samples (i.e., sequencing depth) that can result in a substantially different number of recovered152

reads even among replicates. Ways to tackle this include total library size normalization and rarefac-153

tion, with both remaining debated to date (McMurdie and Holmes, 2014; Weiss et al., 2017). Bioin-154

formatic tools such as DeSeq2 and EdgeR provide ways to normalize count tables (Love et al., 2014;155

Robinson and Oshlack, 2010). Both methods are applied on raw or low-abundance filtered count tables,156

and have performed well in both real as well as simulated datasets and outperform rarefaction-based157

approaches (McMurdie and Holmes, 2014). Other alternatives that account for the compositional as-158

pect of sequencing data include centered log-ratio (CLR), isometric log-ratio (ILR) or additive log-ratio159

(ALR) ratios transformations on a count data matrix with adequate replacements of zeros (Aitchison,160

1984; Egozcue, 2003).161

Following data normalization, traditional workflows include the generation of distance matrices for or-162

dination, clustering, and variance partitioning analyses. Commonly used distance metrics include Bray-163

Curtis, Jaccard and Unifrac (weighted and unweighted). These metrics are often used although they do164

not take into account the compositional nature of sequencing data. The Aitchison distance - defined as165

the Euclidian distance on top of a centered log-ratio transformed count matrix – is a viable composi-166

tional alternative (Aitchison, 1984) that allows performing ordinations (e.g., PCA biplots). Additionally,167

the “Philr” transformation metric has been introduced as a compositional alternative to the weighted168

Unifrac that carries phylogenetic information (Silverman et al., 2017). Most of the above mentioned169

compositional options are implemented in R packages and include publicly available tutorials. In light170

6
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of the challenges related to normalization and analysis of compositional data, we recommend a critical171

evaluation of available data analysis tools to best address the nature of each experimental setup (see also172

section 6).173

Another aspect that prevents data analyses from being fully quantitative is the potential of multiple copies174

of marker genes present per organism, which may also vary across taxa. For example, the 16S rRNA gene175

copy number per bacterial cell can vary between 1 and 18 and can additionally show variation within176

different strains of the same species (Stoddard et al., 2014; Coenye and Vandamme, 2003; Lavrinienko et177

al., 2021). Therefore, relying solely on the number and diversity of markers such a 16S rRNA genes can178

lead to inaccurate estimates of the relative abundance and diversity of microbial communities. Several179

computational tools can correct amplicon datasets for the number of 16S rRNA gene copies based on180

existing genome information (e.g., PICRUSt2 (Douglas et al., 2020) and CopyRighter (Angly et al.,181

2014)). However, correcting for 16S rRNA gene copy numbers in sequencing surveys remains challenging,182

particularly for soil, as the gene copy numbers are only known for a subset of the soil microbes (Louca et183

al., 2018; Nunan et al., 2020). This challenge becomes even more problematic for marker genes of fungi184

and other eukaryotes, such as protists, as the copy number here can vary drastically between taxa (Gong185

et al., 2013; Gong and Marchetti, 2019). Other housekeeping genes, which occur only once in a genome,186

have been proposed as universal phylogenetic marker genes (such as recA (Eisen, 1995)), but their use187

remains limited due to lower phylogenetic resolution and limited availability in databases.188

3.3. Insufficient data availability contributes to a lack of reproducibility189

Reproducibility and reusability of research results are predicated on sharing data and analysis scripts, a190

topic of growing relevance in light of increasing amounts of sequencing data obtained from soils around191

the globe and with the increasing complexity of analyses. Proper data sharing practices allow researchers192

to re-analyze specific aspects of published datasets, and/or investigate patterns in soil communities193

across datasets in the form of meta-analyses. A prerequisite to ensure data storage and availability194

in a usable format is that authors are required to do so by respective journals. In order to assess the195

current state of data deposition in the field, we searched the author guidelines of the 10 specialized soil196

journals (see Fig. 1 for reference). Out of the 10 journals, many “encourage their authors to make data197

available” while only 2 journals specifically require sequencing data to be deposited in public repositories198

such as GenBank before a manuscript is accepted for publication. Even if authors feel encouraged to199

comply, storage of their data in a repository does not always facilitate reproducibility of the reported200

research. Deposited datasets often contain only raw results from whole sequencing runs, and provide201

little meaningful information on the individual amplicons and on the corresponding metadata. As a202

consequence, it may be difficult to reconstitute the exact datasets used for the reported statistics and203

illustrations from such data. This requires that the applied quality filters and processing steps (see204

section 3.1), as well as the versions of applied software packages, be precisely reported.205

Consequently, we call on all specialized soil journals that accept and publish sequencing data to (i) provide206

community standards for reproducible data analysis in their data policy statements and (ii) require the207

submission of sequencing data, ASV/OTU tables, together with sample metadata, to open repositories208

(such as GenBank, Dryad, or FigShare) and (iii) require that analysis scripts be made available on209

open hosting services (such as GitHub) or accompany the publication as a supplement. These steps will210

greatly facilitate reproducibility, open science, and meta-analyses.211

7
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4. Addressing and interpreting compositional sequencing data212

4.1. Interpreting relative abundance data213

The compositionality of amplicon sequencing data presents challenges to the interpretation of changes214

in microbial community structure. The amount of sequence data obtained through high-throughput215

sequencing is a fixed value, resulting in a random sampling of sequences from a sample that cannot216

be directly linked to absolute abundance based on sequences alone (Gloor et al., 2017). Numerous217

studies have revealed shifts in microbial community composition across treatments including gradients218

of temperature, pH, and salinity, as well as seasonal or temporal parameters. This practice is robust on219

a community level when broad-scale changes in taxa are of interest (e.g., phylum level), and has resulted220

in similar ecological conclusions as data generated with more quantitative approaches (Piwosz et al.,221

2020). However, at higher taxonomic resolution (e.g., genus level), quantitative inferences from relative222

abundance sequencing data become more challenging. Due to the nature of sequencing, a change in the223

relative abundance of one species is always reflected in a corresponding change in one or more other224

species. We depict such challenges in interpretation in the following thought experiment (Fig. 3).225

Amplicon sequencing data obtained from the same soil sample at two different time points (t1, t2)226

consists of two species (A, B). The relative abundance observed for species A and B is 0.55 and 0.45 at227

time point 1 (t1), and 0.8 and 0.2 at time point 2 (t2), respectively (Fig. 3). From t1 to t2, species B228

decreases in relative abundance coupled to an increase in the relative abundance of species A. The bars229

below (t2a-t2e) illustrate five examples of changes in absolute abundance in t2 that could underlie the230

patterns observed in relative abundance data. The initial time point (t1) is also shown for comparison.231

The first case represents a situation where the absolute abundance matches the relative abundance232

observations. There are no changes in total biomass from t1 to t2 and species A increases, whereas233

species B decreases (Fig. 3, t2a). The second case depicts an increase in overall biomass between t1234

and t2 caused by an absolute increase in species A and no absolute changes in species B (Fig. 3, t2b).235

The third case represents an opposite scenario where the decreases in total biomass between t1 to t2 is236

caused by a decrease in species B and no changes in species A (Fig. 3, t2c). The fourth case represents237

a situation where there is a general increase in biomass from t1 to t2 prompted by increases in absolute238

abundances of both species A and B (Fig. 3, t2d), while the fifth case represents an opposite scenario239

(Fig. 3, t2e). For some of these examples, observed changes in relative abundance may accurately reflect240

true biological changes (t2a, t2d and t2e), whereas interpretation of the community shifts that underlie241

observed patterns remains more difficult for the other scenarios (t2b and t2c). Without information on242

absolute abundances, there is still room for ambiguous interpretations solely based on relative abundance243

plots (see section 4.2). This theoretical exercise shows, that even for a community of only two member244

species, there are five potential scenarios of changes in the absolute abundance that could cause the245

observed shift in relative abundance. Given that soil communities usually harbour thousands of species,246

the degree of complexity increases dramatically.247

4.2. Experimental approaches to address compositionality248

The challenge of interpreting relative abundance data as illustrated in Figure 3 indicates the advantages249

of adding quantitative information to current amplicon sequencing approaches. Knowledge on absolute250

values (e.g., total microbial biomass) can help to make more robust inferences about the nature of251
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Figure 3: Relationship between the relative abundance of species as observed via amplicon sequencing
and their absolute abundances. The upper panel shows the relative abundance of two species A (shades
of blue) and B (shades of pink) at two time points in a theoretical experiment. From t1 to t2, a decrease
in relative abundance of species B is observed, coupled to an increase in relative abundance of species
A. The relative abundance pattern observed at t2 could have been caused by five changes in the biomass
and absolute abundance of the microbial community as shown in the lower panel. Time point t1 is shown
for comparison.

observed shifts in microbial community structure (Fig. 3, t2d and t2e; (Barlow et al., 2020; Wang et al.,252

2021). In the following, we discuss some approaches ranging from molecular techniques to classic soil253

microbiology that could help improve our interpretation of amplicon sequencing data.254

4.2.1. Quantitative PCR approaches255

One relatively affordable and well-established quantitative method is quantitative real-time PCR (qPCR).256

qPCR enables to assess copy numbers of a marker gene which may be multiplied by the relative abundance257

data of the same sample obtained by amplicon sequencing. This approach benefits strongly from using258

the same primers in both qPCR and sequencing to reduce bias stemming from PCR (see section 2) and259

from correcting for the copy numbers of said marker gene in the genome of target organisms.260

A relatively novel alternative to traditional qPCR is digital PCR (dPCR) which requires no exter-261

nal standard for quantification, offers higher precision, and is relatively unaffected by the presence of262

PCR inhibitors. This represents a tremendous advantage when working with nucleic acid extracts from263

soil (Dong et al., 2015). However, like standard qPCR, the efficiency of this method is affected by the264

degeneracy of the primers, which means particular care must be taken during primer design (see section265

3.1). In addition, both dPCR and qPCR are limited in terms of absolute quantification of the fungal ITS266

gene due to the hypervariable target region and its variable-length (Nilsson et al., 2019).267

A major advantage of both quantitative PCR approaches is the possibility of using the same DNA268

extracts as for the community profiling without additional sample processing that would be required269

9
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for other methods (see sections 4.2.2- 4.2.4). Consequently, quantitative PCR approaches have been270

used successfully to address the compositionality of sequencing data and can aid in the interpretation of271

microbial community data in soil (e.g., (Tkacz et al., 2018; Zemb et al., 2020; Vandeputte et al., 2017;272

Kleyer et al., 2017)) .273

4.2.2. Spike-ins274

Introducing an internal standard (also called a spike-in) can be a useful tool toward achieving more275

quantitative amplicon data analyses. Spike-ins can be introduced in the form of microbial cells (Stämmler276

et al., 2016) or as selected DNA sequences (Tkacz et al., 2018; Hardwick et al., 2018; Wang et al., 2021).277

The spike should be uniquely detectable as a non-member of the existing microbial community, and should278

not be introduced in concentrations that would shift the sequencing effort towards it. Additionally,279

the timing of the addition will determine the type of information retrieved. While adding the spike280

after extraction can provide good estimates of amplification and/or sequencing biases, it does not take281

extraction efficiency into account (Hardwick et al., 2018; Stämmler et al., 2016). A recent amplicon282

sequencing study applied a synthetic DNA spike of known concentration to faecal samples prior to283

extraction. They combined this with qPCR quantification to calculate the number of gene copies after284

accounting for the extraction yield. The ratio of each OTU against the initial concentration of 16S rRNA285

genes was used to calculate more accurate abundance levels of each OTU after taking extraction efficiency286

into account (Zemb et al., 2020). If performed in a comparable manner, spike-ins represent a promising287

tool to determine abundances of taxa more quantitatively via sequencing in future soil studies.288

4.2.3. Direct cell counts289

Another approach towards absolute abundance data from soil communities are direct cell counts obtained290

through fluorescence microscopy (Bloem et al., 1995) or fluorescence-activated cell counting (Khalili et291

al., 2019; Frossard et al., 2016) of cells liberated from soil particle surfaces (Riis et al., 1998; Lentendu292

et al., 2013). Total counts help to assess the absolute abundance of microbial cells that fall within a293

certain range of parameters such as cell size and morphology. Cell counting approaches remain more294

straightforward for single-cell archaea and bacteria than for filamentous bacteria, fungi or other soil295

eukaryotes. The success of cell counting can be negatively affected by soil autofluorescence (low signal-296

to-noise ratio), partial separation of microbial cells from soil particles, or masking the detection of cells297

by overlaying soil particles. Nevertheless, assessing the number of cells in samples also subjected to298

sequencing may help to estimate changes in absolute abundance and to better interpret sequencing data299

(Fig. 3).300

In addition, the observation and enumeration of target species of interest through marker-based ap-301

proaches (e.g., FISH: fluorescence in situ hybridization) enables the quantification of absolute abundances302

of those species identified through sequencing. This practice not only allows soil ecologists to verify if the303

change observed in relative abundance indeed translates to shifts in the community by counting taxa of304

interest on filters (Piwosz et al., 2020), but also expands the interpretation of sequencing data to localize305

and visualize species of interest in situ (e.g., on roots (Martin et al., 2020)) and to elucidate ecological306

implications behind changing abundances of target species in soil samples. Applications of FISH in con-307

junction with amplicon sequencing to soil samples are surprisingly rare albeit such targeted localization308

and enumeration is a powerful tool to understand the dynamics of certain phylogenetic groups in soil on309

a quantitative basis.310

10



P
os

te
d

on
A

ut
ho

re
a

23
A

pr
20

21
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

91
95

35
.5

18
86

44
8/

v1
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

4.2.4. Combining classical soil biogeochemical methods with amplicon sequencing311

Traditional soil biogeochemical approaches enable the quantification of total microbial biomass in soil,312

including methods such as chloroform fumigation extraction (CFE)(Brookes et al., 1985), phospholipid313

fatty acid (PLFA) profiling (Frosteg̊ard et al., 1991; Åsa Frosteg̊ard et al., 2011; Buyer and Sasser,314

2012) and ergosterol measurements (Joergensen and Wichern, 2008; Montgomery et al., 2000). In con-315

trast to PCR-based methods, they assess the concentration of chemical microbial biomarkers in soil316

directly, thereby avoiding biases introduced by amplification of the target molecules. For example,317

such quantitative information regarding an increase or decrease in total microbial biomass between318

treatments would complement corresponding shifts in relative abundance data as observed via amplicon319

sequencing (Fig. 3). In addition to assessing total microbial biomass, PLFA measurements can also320

generate abundance information for microorganisms at a coarse phylogenetic resolution. The ability to321

obtain abundance profiles for bacteria, fungi, as well as distinguishing between gram-positive, gram-322

negative, and Actinobacteria, could be used as a “benchmark” for interpreting relative abundance data323

for more specific subsets of an amplicon dataset (i.e., (Drigo et al., 2010)). A combined interpretation of324

datasets from biochemical and molecular methods with fundamentally different measurement principles,325

however, may not always be as straightforward as the combination of amplicon sequencing data with326

quantitative PCR (see section 4.2.1).327

Overall, we suggest that adding any quantitative measurement of microbial abundance such as quantita-328

tive PCR, cell counting, CFE, or PLFA will benefit and guide the interpretation of amplicon sequencing329

data. The use of more quantitative tools will provide a more robust foundation to reduce misinterpreta-330

tion of compositional sequencing data by providing a link between total microbial biomass and changes331

in the relative abundance of microbial groups.332

5. Linking sequences to ecological context333

5.1. Soil spatial complexity occurs on micro- and macro- scales334

Investigating microbial community composition in soils presents unique challenges. Compared to well-335

mixed ecosystems, microbial life (i.e., growth, activity, dormancy, and turnover) in the soil is strongly lim-336

ited by the complex network of pores, as well as gas transport and diffusion in the aqueous phase (Bickel337

and Or, 2020; Young, 2004; Vos et al., 2013). Soil microarchitecture is a key factor that influences the338

potential for microorganisms to interact with each other (Wilpiszeski et al., 2019). In practice, how-339

ever, the analysis of soil microbial communities through amplicon sequencing does not account for soil340

microarchitecture. Researchers commonly use bulk homogenization approaches to extract nucleic acids341

from 250 - 500 mg of fresh soil which naturally obscures the physical structure and spatial arrangements342

of microbial cells in this soil sample. From the microbial perspective, nucleic acid extraction represents a343

macroscopic measurement of the “whole” microbial community. This practice does not negatively affect344

soil microbiome analyses unless interactions among microbial taxa are inferred (e.g., via network analysis,345

see section 5.4).346

The spatial heterogeneity of soil and the microbial communities therein does not only persist on the347

microscale, but certainly also on a centimeter, meter, field, or ecosystem scale (Becker et al., 2006; Wolfe348

et al., 2006; Franklin and Mills, 2003). Sampling “the same soil” a few meters apart or at different depths349

11
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in the soil profile might result in individual samples with varying biogeochemical properties such as pH,350

water saturation, soil texture, and also plant root distribution (Zhang and Hartemink, 2021). Choosing351

a sufficient number of replicates to assess sample or plot variability while balancing the cost-to-gain ratio352

is certainly an important measure to address soil heterogeneity (see section 6). Thus, it is critical to353

carefully evaluate the representativeness of technical and biological replicates. A recent study showed354

distinct and consistent differences in bacterial and fungal communities between individual replicate soil355

samples throughout a season even though 10-15 cores were randomly sampled in individual subplots and356

pooled (Carini et al., 2020). Another study showed that chemical soil properties, as well as microbial357

biomass and communities, exhibited high levels of spatial variation across 49 samples in a 6 × 6 m358

forest plot (Štursová et al., 2016). The pooling of samples, individual extractions of DNA/RNA and/or359

amplification reactions made from a single DNA template can certainly dampen confounding effects of360

community heterogeneity. Nevertheless, existing intraplot variability and representativeness of samples,361

as well as the appropriateness of sampling strategies to correctly address them, must be critically assessed362

in any study on soil microbiomes. Otherwise, drawing of generalized macroecological conclusions from363

soil samples taken and pooled across large distances may yield speculative information at best (Zhang364

et al., 2020; Dini-Andreote et al., 2020).365

5.2. Temporal scales to consider when analyzing microbial dynamics366

When designing an experiment, one must not only consider the spatial scales at which microorganisms367

live and interact but as well the temporal scale, i.e., the frequency at which sampling should occur to368

capture temporal dynamics. Amplicon sequencing represents a snapshot of microbial prevalence at a369

given moment. Given that microbial community turnover among different soils is may range from weeks370

to years (e.g., (Spohn et al., 2016)), it is difficult to assess the best temporal sampling strategy a priori . If371

for example effects of root exudation on soil microbial community dynamics are of interest, it is important372

to consider the different temporal scales of the processes to be correlated. Root exudation varies with373

plant development stage and shows diurnal patterns (Oburger et al., 2014), whereas community changes374

on a DNA level may not be detectable on such a short temporal scale (in contrast to RNA, see below).375

Any pattern of a single sampling time point would rather represent a legacy community that established376

around plant roots instead of the current state of a community that can be linked to root exudation377

(composition, rate) measured at the same time point.378

Another soil parameter that might mask the detection of community shifts is intrinsically linked with379

microbial turnover: relic or environmental/exogenous DNA. Relic DNA is extracellular DNA from non-380

viable cells that has leaked into the environment and that is thought to persist in soils for months to381

years (Levy-Booth et al., 2007; Carini et al., 2016). Relic DNA has been estimated to comprise approxi-382

mately 40% of the amplifiable soil DNA pool and has been successfully removed from soil samples via the383

application of DNAses or propidium monoazide (Lennon et al., 2018; Carini et al., 2020; Carini et al.,384

2016). The latter study found greater differences in soil communities across several time points where385

relic DNA was removed as compared to samples where relic DNA was still present. Consequently, the386

presence of relic DNA may complicate the interpretation of sequencing data by over- or under-estimating387

microbial diversity which may be of particular concern when temporal dynamics are key to the scientific388

question.389

One possibility to address short temporal dynamics while eliminating bias of relic DNA is ribosomal RNA390

(rRNA) amplicon sequencing via complementary DNA (cDNA) synthesis. The lifetime of rRNA in soils391

12
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is relatively short and has been estimated to range from days to a few weeks depending on biogeochemical392

parameters such as temperature, pH, and water saturation (Schostag et al., 2020; Blazewicz et al., 2013).393

Thus, rRNA-targeted amplicon sequencing may increase the chances of capturing dynamics within soil394

microbial communities over time and may be used to carefully assess the “active” fraction thereof (Vieira395

et al., 2019) (see Table S2). Caution should still be taken when sequencing of nucleic acids at higher396

frequencies, even if relic DNA has been removed or RNA is used. If community dynamics are to be397

investigated in short time intervals (e.g., minutes to hours) we suggest combining amplicon sequencing398

with methods for targeting the metabolically active cell fraction (as discussed in section 7).399

5.3. Inferring function from phylogeny400

Although some links exist between the environment and the community composition therein, amplicon401

sequencing cannot be used to predict microbial function and roles in ecological processes (Fierer et al.,402

2007; Fierer, 2017). Nevertheless, it can serve as a useful tool to survey microbial communities through403

detection of a section of a single gene or gene region (Fig. 4). The consequence of targeting a subsection404

of microbial genomes is that ecological insights that can be extracted from these data remain limited.405

Function of taxa identified via amplicon sequencing cannot simply be inferred from the phylogeny of these406

organisms, as complex evolutionary processes (e.g., horizontal gene transfer) play a key role in functional407

trait distribution across the genomes of microorganisms (Menna and Hungria, 2011). Function may not408

necessarily be conserved across phylogenetic levels, and therefore processes cannot be reliably predicted409

and assigned to taxa using amplicon sequencing targeting phylogenetic markers such as 16S rRNA410

genes (Nunan et al., 2020; Li et al., 2019). Consequently, we suggest to avoid inferring life strategies of411

taxa via their classification into a phylum (e.g., equating Proteobacteria with fast-growing r-strategist)412

and using such assumptions to explain processes in soils for surveys based on general markers such as 16S413

rRNA genes (Jeewani et al., 2020) and ITS regions (Zhou et al., 2021).414

Recent studies apply functional predictions using packages such as PICRUSt2 (Douglas et al., 2020) or415

Tax4Fun (Aßhauer et al., 2015), which suggest that metagenomes (and therefore functional potential of416

organisms) can be extrapolated from the sequenced amplicon using phylogenetic markers. In the case417

of fungi, FUNGuild or FungalTraits have been developed, which parses OTUs/ASVs into functional418

guilds based on similarity to existing reference sequences (Nguyen et al., 2016; Põlme et al., 2020). The419

main limitation of these approaches lies in the fact that they are dependent on a single gene, and the420

completeness of reference sequence databases, many of which remain incomplete due to bias in the types421

of organisms for which we have references (section 3, (Choi et al., 2016)). However, these prediction-422

based software packages can be used to generate valuable hypotheses for further investigation or an423

additional line of evidence to support a finding. In such cases, we recommend to follow up by either424

FISH-counting of the identified species, functional gene-targeted sequencing, or SIP experiments to learn425

more about the species or community that is hypothesized to be responsible/involved in an ecosystem426

process (further discussed in section 7).427

5.4. Interpreting co-occurrence data and networks428

Challenges associated with amplicon sequencing analysis and interpretation also complicate the use of co-429

occurrence network analysis from soil samples. Generally, co-occurrence analysis generates networks with430

biological species as nodes and edges representing associations between them. Network construction is431

based on the detection of significant correlations between taxa, and can be used to investigate properties432
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of microbial communities including organismal co-existence (e.g., (Barberán et al., 2011)), identification433

of keystone species (e.g., (Banerjee et al., 2018)) and the stability of community structure (e.g., (de434

Vries et al., 2018; Shi et al., 2016)). There has been a recent upsurge in the number of studies including435

the construction of association networks for soil microbial communities. However, many of these studies436

have been criticized for their highly descriptive use of networks, that do not allow for an ecological437

interpretation of detected patterns.438

The difficulty in interpretation stems from inferring causal relationships between taxa based on corre-439

lations, which is a long-standing topic of discussion in ecology (Blanchet et al., 2020; Barner et al.,440

2018). Particularly for soil, it is important to keep in mind that the data contained in each environ-441

mental sample is only a snapshot of complex spatio-temporal dynamics (see sections 5.1 and 5.2). As442

interactions occur at the level of individual microorganisms, inferring interaction among microorganisms443

in soil is facilitated if samples were taken on the microscale or aggregate scale, rather than on the bulk444

or horizon scale (see Fig. 4). Independent from scale, any sequencing data from soil capture a noisy445

signal which reflects several biological processes including: reproduction, death, dispersal, environmental446

filtering, as well as intra- and inter-specific interactions. The heterogeneity (and resulting sparsity) of447

amplicon datasets represents an additional confounding effect that may introduce spurious associations,448

posing additional challenges unique to the study of soil ecosystems.449

For microbiome data, the associations are most often assigned through the detection of significant cor-450

relations between relative abundances, where spurious links can be detected if compositional data is not451

appropriately handled (as explained Section 4). Several popular network construction tools, including452

SparCC (log ratios) and SPIECEASI (clr), apply log ratios to address compositionality in the process453

of network construction (Kurtz et al., 2015; Friedman and Alm, 2012). Another option is to convert454

relative abundances into absolute values by using the total gene copy numbers obtained from qPCR455

(see section 4). To improve this analysis we suggest a careful comparison of data with null models to456

help interpret the results and eliminate some indirect associations between species (Connor et al., 2017).457

Additionally, the use of complementary environmental measurement data can improve ecological insights458

from networks (Goberna et al., 2019; Lima-Mendez et al., 2015). We recommend performing follow-up459

experiments to further investigate potential interactions to explore inferences made through network460

analysis. In summary, the field of network inference is rapidly evolving and alternatives are emerging461

to address currently standing issues. Nevertheless, we still lack a definite framework that allows for a462

straightforward interpretation of generated co-occurrence networks.463
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Figure 4: Schematic representation of the main spatio-temporal scales of soil ecosystems. Climate and
seasonal patterns are depicted aboveground. The three main scales at which researchers investigate soil
microbial communities are depicted as the macroscale, mesoscale, and microscale. Circle insets show
the resolution at which microbial communities can be studied at each scale, emphasizing that careful
experimental planning must be undertaken to capture community dynamics of interest. A partial single
region of a selected marker gene that is captured by amplicon sequencing is depicted in the lower yellow
box.
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6. Addressing the overinterpretation of sequencing data464

Amplicon sequencing data are well-suited for exploratory analysis and hypothesis generation in soil465

research, but can also be applied for targeted hypothesis testing if appropriate complementary and466

statistical methods are selected ((Gloor et al., 2017); sections 3 and 4). As amplicon datasets from soil467

are characterized by compositionality, heterogeneity and sparsity, the use of standard statistical methods468

(including Pearson correlations or t-tests on proportions) can lead to very high false-positive discovery469

rates (up to 100% ; (Mandal et al., 2015; Morton et al., 2017)). Almost any soil microbiome data set will470

show significant correlations as the data consist of thousands of individual variables. The possibility to471

obtain significant results, therefore, may also lead to an abuse of the statistical significance (also referred472

to “p hacking”). These effects are further compounded by spatio-temporal dynamics that contribute to473

challenges in statistical inference from amplicon sequencing in soils (see section 5). Consequently, we ask474

researchers to apply caution when inferring effects or associations solely based on statistical significance.475

The recent discussion surrounding the abuse of p-values has resulted in alternatives and suggestions for476

the use of more stringent p-values to reduce the false-positive discovery rate (Nuzzo, 2014; Amrhein et477

al., 2019; Wasserstein et al., 2019; Benjamin et al., 2017). This would require an estimated dramatic478

increase in sample size (up to 70%), which would be costly, but could also save money in the long run479

that would have been spent on unsubstantiated research.480

We explored the impact of sample replication on statistical power in soil microbiome analysis using a481

published dataset on bacterial and fungal communities that features a range of soils representative of the482

heterogeneity and biological diversity of soils (Zheng et al., 2019) (see supplementary methods) following483

the approach described in (Kelly et al., 2015). We simulated OTU/ASV tables (see supplementary484

information for description of data processing) and computed the dependency of statistical power of485

permutational multivariate analysis of variance (PERMANOVA) on the effect size, by bootstraping the486

simulated matrices with varying replicate numbers (4, 5, 8 and 10 replicates; Fig. 5). We briefly487

described the procedure used in the Supplementary information and address the reader to previous488

publication (Kelly et al., 2015) for further details and how to implement the analysis with the package489

‘micropower’ available for R programming language.490

Figure 5a shows the statistical power to detect significant differences with increasing effect size for491

multiple groups (representing different sample sizes). This clearly shows that even a small increase in492

the sample size increases the power to detect small differences. These results are similar to the findings493

described in (Kelly et al., 2015) using the Human Microbiome Project (HMP) dataset with 16S rRNA494

marker gene data sampled at multiple body sites. To better visualize these differences, we further495

calculated the average statistical power for a range of effect sizes ( ω2 ) defined as ‘Low’ (0.001-0.04),496

‘Medium’ (0.04-0.08) and ‘High’ (0.08-0.12). Our analysis showed that the number of replicates hardly497

affects the statistical power if there was a strong effect of treatment/site(Fig. 5b, “High”). However, if498

the simulated treatment/site effect was lower, we found that an increase of the replicate number from 4499

to 5 was sufficient to almost double the statistical power of small effect size (“Low”) and to achieve the500

recommended power above 0.8 for medium effect sizes (Fig. 5b, “Low” and “Medium”). Consequently,501

these effects were more pronounced when the number of replicates was doubled (4 to 8; Fig. 5b). Identical502

effects were observed for the fungal data set (Fig. S1bc).503

In practice, obtaining knowledge about the level of differences in soil microbial communities a priori is a504

complicated undertaking. If preliminary sequencing data is available we encourage researchers to perform505
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such power analyses before experimental planning. Such considerations should also include the amount506

of technical replicates that will be pooled to alleviate the spatial heterogeneity of soils (see section 5).507

We refer to further literature on experimental planning and robust statistical analyses (e.g., (Coenen et508

al., 2020; Kelly et al., 2015; Johnson et al., 2014)).

Figure 5: Graph showing: a) the calculated PERMANOVA power for a range of simulated effect
(quantified by the adjusted coefficient of determination omega-squared (ω2) and divided by number
of replicates per treatment); b) the average PERMANOVA power of panel ‘a’, grouped by number of
replicates per treatment and into three effect size ranges: Low (0.001-0.04), Medium (0.04-0.08) and high
(0.08-0.12). PERMANOVA power was calculated as the proportion of bootstrap distance matrices for
which PERMANOVA P -values are less than the pre-specified threshold for type I error (0.05)

509

7. Complementary approaches to amplicon sequencing that im-510

prove ecological insights511

As a consequence of the relative nature of amplicon sequencing data, the majority of such studies512

are descriptive. Marker-gene base surveys have certainly contributed to generate valuable knowledge513

regarding microbial diversity and community structure, underpinning the critical roles of microorganisms514

in the environment. However, the limitation of using DNA sequence information to infer in situ activity,515

or even potential metabolic functions, has been looming over the field of environmental microbiology from516

its early days. This inherent property results from both the fact that two organisms with closely-related517

16S rRNA gene sequences might possess different metabolic capacities (Li et al., 2019), and even if the518

function of the organism is known, the presence of DNA or even RNA does not necessarily indicate that519

the cells are active (Blazewicz et al., 2013). Recent studies are beginning to combine other types of data520

with amplicon sequencing to improve investigations of ecological patterns.521

Using stable isotopes as an indicator of activity is one of the more popular and robust ways to bridge522

the gap between microorganisms and their function in ecological processes. In environmental microbiol-523

ogy, DNA or RNA stable isotope probing (SIP) is applied by incubating a sample with a isotopically-524
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labelled substrate (including heavy and rare stable isotopes of C, N, H or O), that can be incorporated525

into the biomass of metabolically active cells (Angel, 2019; Dumont and Murrell, 2005). Unfortunately,526

for P no stable isotopes next to the one and only 31P exist. The identity/community profile of the527

labelled organisms may then be determined using separation of different buoyant densities of the nucleic528

acids and subsequent sequencing of the different density fractions which allows drawing causal ecological529

interpretations of the microorganisms active in the uptake and/or assimilation of the substrate. Or-530

ganisms labelled through SIP may further be detected and identified on a single-cell level using other531

methods, such as Raman microspectroscopy or NanoSIMS in combination with FISH (Musat et al., 2016;532

Wang et al., 2016).533

Other recent advances in linking microorganisms to functions include so-called ‘next-generation physiol-534

ogy’ approaches (Hatzenpichler et al., 2020). Similar to SIP, these methods require the introduction of535

isotopically labelled or non-canonical molecule into the sample for the detection of metabolically active536

organisms. The use of heavy-water labelling has become a recent popular approach for universal target-537

ing of all active organisms using either 18O-H2O (Aanderud and Lennon, 2011; Schwartz, 2007; Angel538

and Conrad, 2013) or deuterium oxide (D2O) (Li et al., 2019; Eichorst et al., 2015). The assimilation539

of 18O-H2O into DNA can be used to deduce microbial growth rates (Hungate et al., 2015), whereas540

heavy water (D2O) can be detected in the newly synthesized lipids or proteins of active cells (Li et al.,541

2019). Combined with the identification of taxa of interest through amplicon sequencing, next-generation542

physiology approaches represent powerful tools to bring us to the next step in soil ecological research.543

Amplicon sequencing may also be combined with with BioOrthogonal Non-Canonical Amino acid Tagging544

(BONCAT) to target only the fraction of cells within a soil sample that is translationally active in545

situ (Couradeau et al., 2019; Reichart et al., 2020). The use of modified indicator molecules opens546

new avenues for detecting metabolically active cells in the context of environmental samples, however,547

the application to soil remains limited to very few studies so far (Couradeau et al., 2019; Reichart548

et al., 2020). Coupling these labelling approaches to cell sorting via fluorescence-activated cell sorting549

(FACS) (Couradeau et al., 2019) or Raman-activated cell sorting (RACS) (Lee et al., 2019), provides550

a non-destructive alternative to NanoSIMS for identifying the metabolically active organisms, and thus551

allowing the labelled fraction of cells to be targeted for downstream sequencing. Additionally, combining552

these labelling approaches with cell sorting and sequencing may further circumvent challenges associated553

with exogenous DNA.554

In addition, amplicon sequencing can certainly also be a valuable tool for planning of more targeted555

metagenomic or metatranscriptomic studies to investigate phylogenetic composition, functional poten-556

tial and/or gene expression in the community context (Regalado et al., 2020). These approaches remain557

promising for improving the link between organisms and their ecological roles and circumvent method-558

ological challenges introduced through amplicon sequencing, such as PCR bias. However, both sequencing559

and bioinformatic costs for gaining functionally relevant insights into ecosystem processes by “omics” ap-560

proaches are typically orders of magnitudes higher than those needed for analyzing amplicon sequencing561

data. The use of a limited number of metagenomes or metatranscriptomes in complement to amplicon562

sequencing presents a cost-effective and informative approach for linking microbial community structure563

to function in the complex soil environment.564
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8. Summary and outlook565

Amplicon sequencing is and will remain a valuable approach for investigating the structure of microbial566

communities in soils. However, the complex nature of soils and high diversity of organisms therein567

necessitate careful considerations, from sampling strategies to statistical analyses, to avoid mis- or over-568

interpretation of the data. Amplicon sequencing as a standalone approach should primarily serve as a569

hypothesis-generation tool that is highly descriptive in nature, mainly allowing one to catalogue nucleic570

acids of organisms present in a given sample. As one key goal of soil microbial ecology is to link organisms571

to environmental processes, sequencing-based studies need to be complemented with other data types, in572

addition to appropriate normalization and statistical approaches. Understanding the nature of amplicon573

data and the role of sequencing as a valuable tool for soil scientists will further expand our understanding574

of microbial community diversity and structure in the immensely complex soil environment.575
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Terrat, S., Christen, R., Dequiedt, S., Lelièvre, M., Nowak, V., Regnier, T., Bachar, D., Plassart,1103

P., Wincker, P., Jolivet, C., Bispo, A., Lemanceau, P., Maron, P.-A., Mougel, C., Ranjard, L., 2011.1104

Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil1105

DNA extraction procedure. Microbial Biotechnology 5, 135–141. doi:10.1111/j.1751-7915.2011.00307.x1106

Thompson, L.R., and Jon G. Sanders, McDonald, D., Amir, A., Ladau, J., Locey, K.J., Prill, R.J., Tri-1107

pathi, A., Gibbons, S.M., Ackermann, G., Navas-Molina, J.A., Janssen, S., Kopylova, E., Vázquez-Baeza,1108
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Wan, J., Žifčáková, L., Howe, A., Ladau, J., Peay, K.G., Storch, D., Wild, J., Baldrian, P., 2019. A1139

meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications 10.1140

doi:10.1038/s41467-019-13164-81141

Walters, K.E., Martiny, J.B.H., 2020. Alpha- beta-, and gamma-diversity of bacteria varies across1142

habitats. PLOS ONE 15, e0233872. doi:10.1371/journal.pone.02338721143

Wang, S., Wu, Q., Han, Y., Du, R., Wang, X., Nie, Y., Du, X., Xu, Y., 2021. Gradient Internal1144

Standard Method for Absolute Quantification of Microbial Amplicon Sequencing Data. MSystems 6.1145

doi:10.1128/msystems.00964-201146

Wang, S., Wu, Q., Han, Y., Du, R., Wang, X., Nie, Y., Du, X., Xu, Y., 2021. Gradient Internal Standard1147

Method for Absolute Quantification of Microbial Amplicon Sequencing Data.. MSystems 6.1148

Wang, Y., Huang, W.E., Cui, L., Wagner, M., 2016. Single cell stable isotope probing1149

in microbiology using Raman microspectroscopy. Current Opinion in Biotechnology 41, 34–42.1150

doi:10.1016/j.copbio.2016.04.0181151

Wasserstein, R.L., Schirm, A.L., Lazar, N.A., 2019. Moving to a World Beyond “p 0.05”. The American1152

Statistician 73, 1–19. doi:10.1080/00031305.2019.15839131153

Weiss, S., Van, T.W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., Xia, L.C., Xu, Z.Z., Ursell, L.,1154

Alm, E.J., Birmingham, A., Cram, J.A., Fuhrman, J.A., Raes, J., Sun, F., Zhou, J., Knight, R., 2016.1155

Correlation detection strategies in microbial data sets vary widely in sensitivity and precision.. ISME J1156

10, 1669–81.1157

Weiss, S., Xu, Z.Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., Lozupone, C., Zaneveld, J.R.,1158

Vázquez-Baeza, Y., Birmingham, A., Hyde, E.R., Knight, R., 2017. Normalization and microbial differ-1159

ential abundance strategies depend upon data characteristics. Microbiome 5. doi:10.1186/s40168-017-1160

0237-y1161

Wilpiszeski, R.L., Aufrecht, J.A., Retterer, S.T., Sullivan, M.B., Graham, D.E., Pierce, E.M., Zablocki,1162

O.D., Palumbo, A.V., Elias, D.A., 2019. Soil Aggregate Microbial Communities: Towards Understanding1163

Microbiome Interactions at Biologically Relevant Scales. Applied and Environmental Microbiology 85.1164

doi:10.1128/aem.00324-191165

Wolfe, B.E., Mummey, D.L., Rillig, M.C., Klironomos, J.N., 2006. Small-scale spatial heterogeneity of1166

arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community.1167

Mycorrhiza 17, 175–183. doi:10.1007/s00572-006-0089-y1168

Young, I.M., 2004. Interactions and Self-Organization in the Soil-Microbe Complex. Science 304,1169

1634–1637. doi:10.1126/science.10973941170

Zemb, O., Achard, C.S., Hamelin, J., Almeida, M.-L.D., Gabinaud, B., Cauquil, L., Verschuren, L.M.G.,1171

Godon, J.-J., 2020. Absolute quantitation of microbes using 16S rRNA gene metabarcoding: A rapid1172

34



P
os

te
d

on
A

u
th

or
ea

23
A

p
r

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
o
u
t

p
er

m
is

si
on

.
—

h
tt

p
s:

/
/d

o
i.
or

g
/1

0.
2
25

41
/a

u
.1

61
91

95
35

.5
1
88

64
48

/v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

normalization of relative abundances by quantitative PCR targeting a 16S rRNA gene spike-in standard.1173

MicrobiologyOpen 9. doi:10.1002/mbo3.9771174

Zemb, O., Achard, C.S., Hamelin, J., De, A.M.L., Gabinaud, B., Cauquil, L., Verschuren, L.M.G.,1175

Godon, J.J., 2020. Absolute quantitation of microbes using 16S rRNA gene metabarcoding: A rapid1176

normalization of relative abundances by quantitative PCR targeting a 16S rRNA gene spike-in standard.1177

MicrobiologyOpen 9, e977.1178

Zhang, K., Delgado-Baquerizo, M., Zhu, Y.-G., Chu, H., 2020. Space Is More Important1179

than Season when Shaping Soil Microbial Communities at a Large Spatial Scale. MSystems 5.1180

doi:10.1128/msystems.00783-191181

Zhang, Y., Hartemink, A.E., 2021. Quantifying short-range variation of soil texture and total carbon of1182

a 330-ha farm. CATENA 201, 105200. doi:10.1016/j.catena.2021.1052001183

Zhang, Z., Qu, Y., Li, S., Feng, K., Wang, S., Cai, W., Liang, Y., Li, H., Xu, M., Yin, H., Deng, Y.,1184

2017. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes1185

of taxa.. Sci Rep 7, 4837.1186
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