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1 Abstract

I introduce k-crossing paths and partitions and count the number of paths for each number of desired
crossings k for systems with 11 points or less. I give some conjectures into the number of possible paths for
certain numbers of crossings as a function of the number of points.

2 Introduction

A order n meandric partition is a set of the integers 1---n, such that a path from the south-west can weave
through n points labeled 1---n without intersecting itself and finally heads east (examples are shown in
Fig. 1). Counting the number of possible paths for n points is a tricky problem, and no recursion relation,
generating function or explicit formula for the number of order n meandric partitions appears to have been
found. This work is concerned with the number of paths that must intersect themselves exactly k times,
where when k is 0, we have the meandric paths. It is possible to draw a line that deliberately crosses itself as
many times as required, because of this we only consider a path to be k-crossing if k is the smallest number
of crossings possible, that is a path that must cross itself k& times (an example of a 3-crossing path over 9
points is given in Fig. 2).

3 Results

Define ax(n) to be the number of configurations of n points where the path through them is forced to cross
itself k times. For 0-crossings on n points we have the open meandric numbers, given in the OEIS as A005316

ao(n) =1,1,1,2,3,8,14,42, 81,262, 538, 1828,3926,--- , n=0,1, - (1)



this work has counted this for £ > 0 by calculating all n! permutations of the n integers and checking to see

the minimal number of crossings for each, we then have
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where the vertical sum over columns of terms gives n!.

4 Conjectures
The above information has lead to a few conjectures.
Conjecture 1: a,2(2n) =1 (3)

this can be converted to words as, there is exactly one path through 2n points that crosses n? times. The
partitions associated with these paths are
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and a clear interlaced pattern can be seen (an example is given in Fig. 3).

Conjecture 2: a,2_1(2n) =2, n > 1 (9)
Conjecture 3: a,2_o(2n) =4n+2, n > 2 (10)
Conjecture 4: a,2_3(2n) =8n+8, n >3 (11)

Conjecture 5: a,2(2n +1) =2(n +1)3""1 n > 1 (12)



Figure 1: Fig 1. An example of a meandric path (0-crossing path) with n = 10. This path has meandric
partition (1,2,3,8,5,6,7,4,9,10).

Figure 2: Fig 2. An example of a path that crosses itself 3 times on 9 points. This path has partition
(1,3,4,2,6,5,7,9,8).



Figure 3: Fig 3. An example of a maximally crossing partition, for 10 points, there is only 1 solution, and
Conjecture 1 predicts there is only 1 partition of this type for any even number of points. The number of
crossings at the top of the line is a triangular number 10 and the number of crossings at the bottom is the
next triangular number 15. This partition is (6,1,7,2,8,3,9,4, 10,5).
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