On the Number of k-Crossing Partitions

Benedict Irwin¹

¹University of Cambridge

May 5, 2021

1 Abstract

I introduce k-crossing paths and partitions and count the number of paths for each number of desired crossings k for systems with 11 points or less. I give some conjectures into the number of possible paths for certain numbers of crossings as a function of the number of points.

2 Introduction

A order n meandric partition is a set of the integers $1 \cdots n$, such that a path from the south-west can weave through n points labeled $1 \cdots n$ without intersecting itself and finally heads east (examples are shown in Fig. 1). Counting the number of possible paths for n points is a tricky problem, and no recursion relation, generating function or explicit formula for the number of order n meandric partitions appears to have been found. This work is concerned with the number of paths that must intersect themselves exactly k times, where when k is 0, we have the meandric paths. It is possible to draw a line that deliberately crosses itself as many times as required, because of this we only consider a path to be k-crossing if k is the smallest number of crossings possible, that is a path that must cross itself k times (an example of a 3-crossing path over 9 points is given in Fig. 2).

3 Results

Define $a_k(n)$ to be the number of configurations of n points where the path through them is forced to cross itself k times. For 0-crossings on n points we have the open meandric numbers, given in the OEIS as A005316

$$a_0(n) = 1, 1, 1, 2, 3, 8, 14, 42, 81, 262, 538, 1828, 3926, \dots, n = 0, 1, \dots$$
 (1)

this work has counted this for k > 0 by calculating all n! permutations of the n integers and checking to see the minimal number of crossings for each, we then have

	0	,							
n =	0	1	2	3	4	5	6	7	8
9	10	11		0	0			40	0.4
$a_0(n) =$	1,	1,	1,	2,	3,	8,	14,	42,	81,
$ 262, a_1(n) = $	$538, \\ 0,$	$1828, \cdots \\ 0,$	1,	4,	10,	36,	85,	312,	737,
$\frac{a_1(n)}{2760}$,		$25176, \cdots$	1,	4,	10,	50,	00,	512,	151,
$a_2(n) =$	0,	0,	0,	0,	8,	42,	168,	760,	2418,
10490,		$131676, \cdots$,	,	,	,	,	,	,
$a_3(n) =$	0,	0,	0,	0,	2,	16,	164,	944,	4386,
22240,	83066,	$398132, \cdots$							
$a_4(n) =$	0,	0,	0,	0,	1,	18,	146,	1076,	6255,
37250,		$908898, \cdots$	0	0	0	0	O.C	060	7200
$a_5(n) = 51968,$	0, $282122,$	$0,$ $1711824, \cdots$	0,	0,	0,	0,	96,	960,	7388,
$a_6(n) =$	0,		0,	0,	0,	0,	30,	440,	6472,
55140,	384065,		٠,	٥,	0,	0,	50,	110,	0112,
$a_7(n) =$	0,		0,	0,	0,	0,	14,	368,	5176,
53920,		$3575040, \cdots$							
$a_8(n) =$	0,		0,	0,	0,	0,	2,	66,	3542,
45960,	484058,		0	•					2011
	,	0,	0,	0,	0,	0,	1,	72,	2011,
$32280,$ $a_{10}(n) =$			0,	0,	0,	0,	0,	0,	1172,
	396493,		0,	0,	0,	0,	0,	0,	1112,
$a_{11}(n) =$	0,		0,	0,	0,	0,	0,	0,	420,
11840,			,	,	,	,	,	,	,
$a_{12}(n) =$,	0,	0,	0,	0,	0,	0,	0,	201,
8930,								_	
$a_{13}(n) =$	0,	0,	0,	0,	0,	0,	0,	0,	40,
$a_{14}(n) =$	151849, 0,	$2947392, \cdots 0,$	0,	0,	0,	0,	0,	0,	18,
$a_{14}(n) = 2040$	91147,	$2103648, \cdots$	υ,	υ,	υ,	0,	υ,	0,	10,
			0,	0,	0,	0,	0,	0,	2,
224,	0, 55030,	$1575744, \cdots$,	,	,	,	,	,	,
$a_{16}(n) =$	0	0	0,	0,	0,	0,	0,	0,	1,
270,	26762,	$915924, \cdots 0,$							
$a_{17}(n) =$			0,	0,	0,	0,	0,	0,	0,
$0, \\ a_{18}(n) =$		$665088, \cdots \\ 0,$	0	0	0	0	0,	0,	0,
$a_{18}(n) = 0,$	0, 5405,		υ,	υ,	0,	0,	0,	0,	0,
$a_{19}(n) =$	0,	0,	0.	0.	0.	0.	0.	0,	0,
0,			,	,	,	,	,	,	,
$a_{20}(n) =$	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,		$63522, \cdots$							
$a_{21}(n) =$	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	293,	$54672, \cdots$	0	0	0	0	0	0	0
$a_{22}(n) = 0,$	0, 48,	$0,$ $8964, \cdots$	υ,	0,	0,	0,	0,	0,	0,
$a_{23}(n) =$	0,	0,	0.	0,	0,	0,	0,	0,	0,
0,	22,	$9552, \cdots$	٠,	~,	٠,	٠,	~,	~,	~ ,
$a_{24}(n) =$	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	2,	$706, \cdots$	2						
$a_{25}(n) =$	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	1,	$972, \cdots$							

(2)

where the vertical sum over columns of terms gives n!.

4 Conjectures

The above information has lead to a few conjectures.

Conjecture 1:
$$a_{n^2}(2n) = 1$$
 (3)

this can be converted to words as, there is exactly one path through 2n points that crosses n^2 times. The partitions associated with these paths are

$$(2,1) \tag{4}$$

$$(3,1,4,2)$$
 (5)

$$(4,1,5,2,6,3) (6)$$

$$(5,1,6,2,7,3,8,4) (7)$$

$$(6, 1, 7, 2, 8, 3, 9, 4, 10, 5) (8)$$

and a clear interlaced pattern can be seen (an example is given in Fig. 3).

Conjecture 2:
$$a_{n^2-1}(2n) = 2, n > 1$$
 (9)

Conjecture 3:
$$a_{n^2-2}(2n) = 4n + 2, n > 2$$
 (10)

Conjecture 4:
$$a_{n^2-3}(2n) = 8n + 8, n > 3$$
 (11)

Conjecture 5:
$$a_{n^2}(2n+1) = 2(n+1)3^{n-1}, n > 1$$
 (12)

Figure 1: Fig 1. An example of a meandric path (0-crossing path) with n=10. This path has meandric partition (1,2,3,8,5,6,7,4,9,10).

Figure 2: Fig 2. An example of a path that crosses itself 3 times on 9 points. This path has partition (1,3,4,2,6,5,7,9,8).

Figure 3: Fig 3. An example of a maximally crossing partition, for 10 points, there is only 1 solution, and Conjecture 1 predicts there is only 1 partition of this type for any even number of points. The number of crossings at the top of the line is a triangular number 10 and the number of crossings at the bottom is the next triangular number 15. This partition is (6, 1, 7, 2, 8, 3, 9, 4, 10, 5).