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Abstract

High-performance computing (HPC) storage systems are a key component of the success of HPC to date. Recently, we have seen
major developments in storage-related technologies, as well as changes to how HPC platforms are used, especially in relation
to artificial intelligence and experimental data analysis workloads. These developments merit a revisit of HPC storage system
architectural designs. In this paper we discuss the drivers, identify key challenges to status quo posed by these developments,

and discuss directions future research might take to unlock the potential of new technologies for the breadth of HPC applications.

High-performance computing (HPC) storage systems have become trusted repositories for hundreds of
petabytes of data with aggregate throughput rates in the terabytes per second. Numerous research advances
have contributed to this success. Object storage technologies helped eliminate bottlenecks related to the
management of space on storage devices. The development of separate data and metadata planes facilitated
scale-out in the data plane to enable high throughput. The adoption of network portability layers eased
porting to new HPC networking technologies. Disaggregation was adopted early, bringing powerful cost
and administrative savings and providing flexibility to serve the diverse batch workloads typical of HPC.
Together with input/output (I/0) middleware technologies, HPC storage systems have largely addressed the
throughput challenges of checkpoint and restart for traditional Message Passing Interface (MPI) simulation
codes, which was their primary driver for many years.
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Figure 1: Examples of prevalent analysis access patterns: Data-intensive analysis algorithms (propelled
by breakthroughs in Al and statistical methods) must extract samples from immense data sets, thereby
triggering storage access patterns that are unpredictable to outside observers. These workloads put pressure
on the storage system’s random read input/output operations per second (IOPS) rate and response time in
ways that cannot be solved with general purpose caching and prefetching.

Meanwhile, HPC applications have evolved from numerical simulations to workloads that include Artificial
Intelligence (AI) and analytics. For example, scientists at the Oak Ridge National Laboratory (ORNL)
Health Data Sciences Institute are developing Al-based natural language processing tools to extract infor-
mation from textual pathology reports using Summit, the USA’s most powerful supercomputer, due to the
vast amounts of memory it provides to its compute cores. Similarly, the High Luminosity Large Hadron
Collider (HL-LHC) will further extend the capabilities of the LHC, allowing further investigation of phe-
nomena fundamental to the nature of the universe. To be installed in 2025, these enhancements will lead to
annual data generation rates of tens of petabytes, with reduced datasets in the petabyte range being used
for analysis. These applications are often read-intensive, and may rely on latency-sensitive transfers, each
consisting of small amounts of data. This marks a dramatic shift in how HPC storage systems are used.
While some emerging read-intensive workloads may be able to rely on structuring within the data to con-
struct efficient data retrieval plans based on caching or prefetching techniques, Al workloads and many data
analytics routines are inherently required to access the data without any predictable ordering. According to
the Department of Energy’s 2020 Al for Science report (Stevens et al., 2020):

“AT training workloads, in contrast, must read large datasets (i.e., petabytes) repeatedly and  perhaps
noncontiguously for training. AI models will need to be stored and dispatched to  inference engines, which
may appear as small, frequent, random operations.”

Figure 1 shows examples of prevalent access patterns for analytics, which are characterized by this lack of
ordering.

Two technology trends have emerged as crucial to data-driven scientific discovery. First, the high-speed
networks used within scientific computing platforms provide extremely low-latency access to remote systems,
including billions of message injections per second and direct access to remote system memory via remote
direct memory access (RDMA) operations. Second, solid-state disks (SSDs) accessed through the Non-
Volatile Memory Express (NVMe) interface provide more than 1,000 times the performance of traditional
hard disk drives for the small random reads used within data-intensive workloads. Interestingly, while HPC
storage systems broadly leverage both high-speed networks and SSDs, this adoption was not driven by the
need to provide low-latency access to remote storage, but by simulation requirements for fast point-to-point
communication between processes and high-throughput requirements for access to HPC storage systems.
With the advent of new read-heavy analysis workloads, however, low-latency remote storage access is now
also a key enabling technology for new data-driven approaches to computational science.
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Figure 2: An exemplar disaggregated HPC storage architecture. Traditional HPC storage systems have been
propelled by simulation workloads to optimize for aggregate bulk synchronous throughput. This is a key
disconnect for data-driven analysis: systems designed to maximize aggregate throughput are poorly suited to
individual random reads. Each access must traverse multiple distinct protocol hops, where each protocol hop
has its own interrupt processing, buffering, handshaking, serialization, and access control conventions. These
protocol translations were designed in an era when high-latency storage devices gated overall performance,
an assumption that no longer holds today.

The evolution of HPC workloads has highlighted previously hidden shortcomings of modern storage systems.
This is due to storage architectures that emerged in the early 2000s and remained static using storage servers
with designated metadata and data roles, tightly attached to the HPC network, and focused on delivering
throughput while relying on software layers that hid latency issues. Traditionally, system architects have
relied on the increase of CPU frequencies and scaling out to prevent latency from affecting application
performance. In recent years, however, CPUs have increased their computational power through the addition
of CPU cores with decreasing frequencies that complicate real-time event processing. Scaling out to meet the
TIOPS requirements that modern HPC workloads place on the storage system is problematic as well. Balancing
work to keep storage and network capability fully utilized is difficult at scale, resulting in underutilized
resources and a higher total cost of ownership.

Emerging Challenges in HPC Storage

Modern HPC storage architectures were shaped by the performance characteristics of conventional hard
drives. Conventional hard drives exhibit minimal (if any) onboard processing capability, low random access
performance, and high latency. These characteristics placed a ceiling on overall storage system performance,
and the remainder of the storage infrastructure was designed around mitigating their limitations as much
as possible. Specifically, storage servers were designed to mediate all access to hard drives. By doing so,
they could shape traffic (e.g., by serializing and batching), buffer data (e.g., through caching based on
locality), and process I/O requests on more powerful host CPUs (e.g., by handling interrupts, packing and
unpacking Remote Procedure Call (RPC) requests, and enforcing authorization) to make the most of hard
drive capabilities. Hard drive access latency also had subtle implications for other elements of the storage
system; there was no incentive to avoid latencies in the client-side operating system or the storage fabric as
long as hard drives gated overall performance (Figure 2 ).



Low-latency access to storage

The architectural approach shown in Figure 2 was successful: it allowed HPC storage systems to extract
maximum aggregate throughput from vast arrays of commodity hard drives. Limitations are evident, how-
ever, now that we attempt to match emerging IOPS and response-time-sensitive workloads to more capable
low-latency storage devices. User-space APIs such as libaio or liburing can issue millions of operations per
second from a single core, network interface cards can inject hundreds of millions of messages into a network
per second, and these rates can be matched by just a few hundred NVMe storage devices. Despite these
capabilities, modern storage servers are only able to process 100,000 RPCs per second from a single core.
Even an incredibly high-end storage server with 100 high-frequency cores could service only 10 million read
or write RPCs per second. Such performance strands over 90% of the network interface capability and
saturates fewer than 10 fast NVMe devices.

In other words, the host-based RPC processing that in the past served to optimize access to storage devices
has now become a hindrance. The server’s ability to deserialize and process an RPC request and then
serialize and send an RPC response is now the gating factor in the IOPS rate. The fastest RPC libraries,
co-designed with high-performance interconnects and performing no server-side processing, have been unable
to achieve even 500,000 RPCs per second per core. The traditional HPC solution of scaling out to achieve
higher IOPS is inefficient; expanding the number of server CPU cores will increase complexity, footprint, and
power demands, offer diminishing returns on aggregate IOPS rate, and effect no improvement in response
time for individual accesses. The classic HPC storage architecture must now be revisited in the context of
mixed workloads and the widespread availability of low-latency hardware components.

Scaling and maintaining low latency

Science teams driving these data intensive activities are pushing the scalability of their computations just
as teams with simulation codes have before them, and it is paramount that storage systems support that
scalability. Traditional caching and prefetching are not generally effective for these algorithms, eliminating
a common option for accelerating access. On the other hand, the HPC networking community has learned
much that can be applied to next-generation storage systems. Limiting the state associated with connections
is an important enabler for scale-out, especially when there’s no obvious structure in the communication as
there is in many scientific codes.

Devices supporting protocols that require connection establishment are incredibly challenging to employ at
HPC scale, but unfortunately, that is the current direction of network-accessible device protocols such as
NVMe-oF. Connectionless models of communication have been demonstrated in HPC (Barrett et al., 2012)
and supported in production hardware (Derradji et al., 2015): it is up to HPC to invent the fast, direct access
to remote storage devices that will be a key enabling technology for scalable storage systems. HPC platforms
have similarly been at the leading edge of requirements for high concurrency, low-latency access to remote
memory, and extending proven techniques to enable similarly parallel and low-latency access to storage is
a natural research direction. Alterations and alternatives to existing data transport methods for storage—
perhaps built using compute-enabled devices—should be investigated and their potential demonstrated.
User-land access to resources has also been shown as critical for maintaining low latencies, which will be
critical in the data plane if not also in at least some aspects of the metadata plane. Approaches along these
lines have begun to be explored in the larger storage community (Chen et al., 2021) but must be adapted
to the scales and networks of HPC.

Securing access to storage devices

In addition to providing efficient access to storage devices, storage system software is also tasked with
providing access control to the data stored within high-performance storage systems. In the current server-
mediated access to storage model, the system software is tasked with enforcing all data access controls.
As we move to a storage access paradigm that supports faster, low-latency access to storage devices, a



server-mediated access control scheme becomes a bottleneck that paralyzes emerging workloads rather than
acting as a useful enforcement mechanism. At the same time, storage devices have gained richer interfaces
and capabilities, including zoned namespaces (ZNS) and embedded functions in the form of computational
storage, and thus it is clear that security models that treat storage devices as only a repository for stored
data are obsolete.

More direct access to storage devices from large numbers of client processes, which may include user-space
access to remote storage devices, must provide new models of security not currently provided by either the
network protocols or storage devices. While the NVMe standards body has defined multiple methods for
securely accessing storage, none of these mechanisms are currently a good match for data-intensive scientific
discovery. The two most common NVMe security methods, in-band authentication and per-request security,
are focused on ensuring that clients are authenticated with servers but cannot differentiate between data
plane operations that read data or write data and control plane operations that create or destroy on-device
namespaces. And while key-per-10 is a novel model that enables every disk access to be secured separately,
the overheads of checking an encryption key for every operation is antithetical to low-latency access to storage
devices. Instead, new security models that expose the performance advantages of zoned namespaces (Bjgrling
et al., 2021) and leverage scalable approaches to embedded compute, such as computational storage and
SmartNICs (Li et al., 2020), require additional research.

Enabling a Future for Data-driven Science

A great deal of effort was required to stabilize HPC storage and make it trustworthy, but it did happen.
Multiple production file system options exist for data centers to choose from, and checkpoint and restart
for HPC codes has largely been addressed. But storage system designers cannot rest on their laurels, and
storage is not a solved problem. Even more than for simulation codes, the potential benefits of HPC for Al
and analysis applications hinge on high performance storage. We need not just innovation, but innovation
that goes hand in hand with these scientific objectives.

Architecturally, the community must revisit the data path between analysis applications and storage devices.
In much the same way that user-space RDMA access has revolutionized HPC networking (removing hand-
shaking, buffering, and host processing from the interprocess communication path) and allowed networks to
keep pace with memory throughput, we must adopt new HPC storage access paradigms that minimize ob-
structions in the storage data path and allow storage systems to keep pace with NVMe capabilities. The need
for RPC processing can be minimized (by thoughtful partitioning of work to control planes), any remaining
RPC processing or asymmetric transfer can be offloaded to smart devices, and the complete data path can
be holistically evaluated to eliminate duplicate and superfluous protocol translations that collectively leach
latency from the system.

From a device interface perspective, storage systems traditionally divide responsibility between the storage
device and host rigidly: the device is responsible for handling data block updates, and the host is responsible
for data processing. But as SSDs continue to replace hard disks at the front-line storage tier, block interface
support requires complex firmware that affects device performance and cost, and as storage becomes disag-
gregated from computation, reducing data movement between the device and host becomes crucial. Novel
interfaces, like Zoned Storage, have emerged to reduce firmware complexity by delegating responsibilities to
the host, and computational storage allows data to be processed on the device in accordance to application
needs, blurring the divide between device and host. Future work will need to adapt popular application types
to fully leverage the capabilities of these devices and explore the right balance of near-storage computation
for different tasks.

User abstractions are another key piece of the puzzle. Building fast and productive storage systems will
require not only addressing these technology challenges but also understanding emerging science needs.
The HPC storage community has contributed interface advances in the past, including concepts eventually



adopted in the mainstream, but recently most storage abstraction innovation has occurred elsewhere, with
cloud service providers offering options such as column stores, document stores, key-value stores, streaming
data infrastructure, and object stores. HPC storage researchers must work together with technology providers
and domain scientists to find abstractions that match science needs and then to develop scalable storage
services embodying those abstractions.

The HPC storage research community also a needs to be reinvigorated. A misconception persists that HPC
storage is a solved problem: new storage systems are iteratively designed and deployed by solving formulas
based on commodity market forces and logistical constraints. In reality, however, many unsolved problems
remain in high-performance storage, especially as high-performance storage comes to the forefront as the key
to enabling both simulation and data-driven analytics use cases. The high-performance storage community
must innovate within this space and then translate those innovations into solutions for our data-driven science
partners. HPC storage and its workloads must become first-class citizens within computer science curricula,
coordinated research thrusts, and partnerships between industry, academia, and governments.

Conclusions

The push to achieve the largest and most complex scientific discoveries using high-performance computing
requires heroic efforts from computational scientists, computing system designers, and software developers.
But critically, these tremendous efforts have proven to successfully flow downstream and make equally
important, but less computationally demanding, scientific discoveries tractable. By design, a calculation
that was entirely heroic a decade ago, can now be achieved by a handful of highly motivated graduate
students. To usher in this same downstream effect for data-driven science, a set of sustained and heroic
efforts are needed for building and operating storage systems that can support highly concurrent and low-
latency access to massive volumes of scientific data. With this key underpinning under development and then
in use, we enable the additional efforts needed to extract new insight and invent new methods for accelerating
data-driven scientific discovery. And in several years, as the benefits of new methods for analyzing data are
realized and made commonplace, small teams of highly motivated graduate students will perform data-driven
searches for discovery that could not be dreamed of as possible within contemporary HPC data centers. The
road ahead, and its inevitable roadblocks and detours, will be difficult and surprising, but the rewards at
the end of this journey are too great to resist.
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