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Abstract1

Target Journal(s): Plos CB, Ecological Modelling, PRE, JTB, Oikos2

Aims3

1. develop easy to use (R package?) extension to MANTIS framework to consider a network of interconnected4

populations5

2. demonstrate some different dynamics possible using this framework and different parameterizations (emphasis on6

network structure)7

- directed movement8

- classic network structures (Erdős–Rényi, small world, “realistic” spatially structured)9

- incorporating local transmission as well as movements10

3. explore differences in application, e.g. deterministic-static, deterministic-dynamic, stochastic-static, etc.11

Many of the most impactful diseases that affect humans, livestock, and wildlife have clusters in their population-12

genetic variability that we classify as strains. Importantly, host immunity to one of these strains is neither inde-13

pendent from nor equivalent to immunity to related strains. This partial cross-protective immunity affects disease14

dynamics across the population as a whole and can dramatically influence intervention strategies. While the study15

of multi-strain diseases goes back decades, this work has not yet been generalized to a loosely connected collection of16

subpopulations, i.e. a metapopulation. Starting from the strain theory of host-pathogen systems proposed by Gupta17
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(1998), we simulate multi-strain disease dynamics on a network of interconnected populations, characterizing the18

effects of parameterization and network structures on these dynamics. We find that dynamics propagate through19

the metapopulation network, even if parameters vary between populations. Moreover, in chains of connected po-20

pulations experiencing cyclical dynamics, the movement of (partially) immune individuals dampens the dynamics21

of populations further along the chain. This work serves as an important first step in extending prior results on22

multi-strain diseases to a generalized population structure. This extension is particularly apt in the case of livestock23

production, where a system of mostly isolated populations (farms) is connected through the forced movement of24

individuals.25
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1 Introduction26

Many of the most impactful infectious diseases that affect humans, livestock, and wildlife have27

clusters in their population-genetic variability that we classify as strains. Such variation in pathogen28

genotype often leads to differences in phenotype as well, importantly affecting the efficacy of host29

immune defenses. While the human immune system is usually capable of preventing re-infection30

with a pathogen to which it has been previously exposed, sufficient evolution on the part of the31

pathogen can lead to reduced recognition by the host. In some cases, this change is not sufficient32

to completely avoid recognition, however, leading to an immune response that is neither as strong33

as would be in the case of re-exposure to the same strain, nor as weak as in the case of exposure to34

a novel pathogen. This partial cross-protective immunity can lead to reduced transmission as well,35

affecting disease dynamics across the population.36

Malaria, Cholera, Human Papillomavirus Virus, Dengue, Porcine Reproductive and Respiratory37

Syndrome, Brucellosis, etc. have strain structure, but differ in both the number of strains and the38

level of cross-protective immunity afforded by past exposure to similar strains. Perhaps the most39

well-studied example is that of Influenza (flu), a viral respiratory tract infection that counts hu-40

mans among its many potential hosts and has substantial economic and public health consequences41

worldwide (Molinari et al., 2007; Fan et al., 2016; Peasah et al., 2013).42

While the study of multi-strain diseases goes back decades, this work has not yet been generalized43

to a loosely connected collection of sub-populations, i.e. a metapopulation. Initially introduced44

through the concepts of island biogeography, this idea can be generalized to a variety of systems,45

including human movement between cities, livestock transport between farms, and populations46

living in fragmented natural habitats. In each case, there exist relatively high-density areas which47

are connected to one another through a network of individuals’ movement. This framework allows the48

application of network analyses that can characterize patterns of connection within the population49

as a whole.50

Historically, metapopulation studies have been been divided into two main camps: those that model51
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within-patch dynamics and “cell occupancy” models in which only the presence or absence of a given52

species within a patch is recorded (Taylor, 1988), with the latter receiving much more theoretical53

attention. Importantly, this latter case rests on an assumption of temporal separation in which local54

dynamics occur on a timescale that can be treated as instantaneous relative to that of the between-55

patch dynamics (Hanski, 1994). When considering diseases in systems with relatively high migration56

rates, however, this assumption rarely holds and the presence-absence approach can significantly57

affect model accuracy, especially when individual disease status might affect migration rates.58

Here, we build on the strain theory of host-pathogen systems proposed by Gupta (1998), considering59

the case where a collection of populations undergoing local dynamics are furthermore interconnected60

through the movement of individuals between populations. We simulate disease dynamics on this61

system, characterizing the effects of parameterization and network structures on these dynamics.62

This work is divided into three sections: first, we explore the simple case of interconnected popu-63

lations with identical parameterizations. Second, we consider the case in which parameters differ64

between populations. Finally, we explore the case of a larger network of connected populations,65

looking at the role of network structure on key measures of disease progression.66

2 Methods67

2.1 Model framework for one population68

We work from a system of ordinary differential equations detailing the proportion of a population69

in classes based on current and past exposure to different strains of a pathogen. We signify a strain70

i = {x1, x2, . . . , xn} as a set of n loci, each of which can take on a finite number of alleles. For71

instance, a pathogen with two loci (a and b) and two alleles at each loci has a total of four potential72

strains: {a1, b1}, {a1, b2}, {a1, b1}, {a2, b2}. Importantly, in this model framework, the number of73

strains is fixed and finite. While strains may go extinct over time, there is no process for the74

generation of new strains or to re-introduce strains that had previously gone extinct (Gupta, 1998,75

but see).76
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The model consists of sets of three nested equations (one set for each strain): w, z, and y, where77

each set consists of as many equations as there are strains. wi represents the proportion of the78

population which has been exposed to a strain j of the pathogen, where strain j has at least one79

allele in common with strain i, i.e., j ∩ i 6= Ø. zi represents the proportion of the population that80

has been exposed to strain i itself. Finally, yi represents that proportion of the population currently81

infected with strain i (and thus capable of infecting others). Thus, the proportion of the population82

in yi is also in zi and the proportion of the population in zi is also in wi, and yi ≤ zi ≤ wi. The83

y class is analogous to the I class in standard SI, SIR, etc. single-strain frameworks, while w and84

z are composed of combinations of I and R classes. The susceptible population is not modeled85

explicitly in this framework.86

These equations have the form:87

dyi
dt

= β ((1− wi) + (1− γ)(wi − zi)) yi − σyi − µyi
dzi
dt

= β(1− zi)yi − µzi
dwi

dt
= β(1− wi)

∑
j3j∩i 6=Ø

yj − µwi

(1)

Where, as above, we denote strains as subscripts and in the equation for wi we sum over all strains88

j which share at least one allele with the focal strain i. β, σ, and µ are the infection, recovery, and89

death rates, respectively. γ is an indicator of the level of cross-protective immunity gained by prior90

exposure to alleles in the target strain. Note that while we depict only one value per demographic91

parameter (i.e., all strains are functionally equivalent) for notational clarity, these values could also92

vary by strain (e.g., βi) in this framework.93

Note that immunity in this framework is non-waning: exposure to a strain yields consistent protecti-94

on from future infection over the lifespan of the individual. The level of this infection is dichotomous:95

with respect to the same strain, it is complete protection, with respect to any strain sharing at least96

one allele, it modifies infection risk according to the parameter γ. Importantly, we also do not distin-97

guish between loci, assuming that sharing an allele at any locus is functionally identical to sharing98
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an allele at any other locus.99

2.2 Extensions to consider more than one population100

Following Xiao et al. (2011), we model movement between populations using a dispersal matrix101

∆ = A − E, where A is the weighted adjacency matrix indicating the proportion of individuals102

moving from from patch i (row) to patch j (column) and E is a diagonal matrix representing103

emigration, where each entry Ejj =
∑n

i=1 Aij where n is the number of patches. Thus, the whole104

system can be depicted by a set of three equations for each strain i in each patch k:105

dyi,k
dt

= β ((1− wi,k) + (1− γ)(wi,k − zi,k)) yi,k − σyi,k − µyi,k +
∑
l

∆klyj,l

dzi,k
dt

= β(1− zi,k)yi,k − µzi,k +
∑
l

∆klzj,l

dwi,k

dt
= β(1− wi,k)

∑
j3j∩i 6=Ø

yj,k − µwi,k +
∑
l

∆klwj,l

(2)

Where each equation is now additionally indexed according to population. While in principle the106

elements of ∆ can take any value [0, 1], signifying a movement of between 0 and 100% of individuals,107

for simplicity we use a constant value of δ = 0.1 for the strength of each movement. TODO:108

Sensitivity to this value is explored in the Supplementary Information.109

Note that this formulation assumes uniform sampling for migration between populations. One might110

imagine cases in which currently infectious individuals are less likely to migrate than those who have111

recovered and now have immunity. TODO: We explore this variation in migration structure in the112

Supplementary Information.113

This framework can be applied to a metapopulation of arbitrary size and complexity. Fundamentally,114

the dynamics of each population will be governed by a set of three equations per disease strain,115

and these equations are interlinked within a population by partial, cross-protective immunity, and116

between populations through a network specifying movement of individuals between patches. Thus,117

the total number of differential equations for any given system will be 3 x the number of strains x118
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the number of patches in the metapopulation.119

2.3 Simulation Prodedure120

All simulations were carried out in Julia (Bezanson et al., 2017), with graphics produced using the121

ggplot package (Wickham, 2016) in R (R Core Team, 2019). In addressing the first two objectives122

mentioned above, we fix the values of all variables other than γ (the degree of cross-protective123

immunity) and ∆ (the network of movement information). The former is varied to demonstrate the124

variety of dynamics obtainable in this modeling framework (as in Gupta (1998)), while the latter125

varies the number and interconnections of the network patches.126

For each of the following simulations, we assume that there is no mortality, but add movement out127

of each sink population to balance in- and out-flows in the system. This simplification does not128

qualitatively change the dynamics of the system.129

For Figure 1, we use a movement network described by a chain of populations, i.e. A→ B → C → D130

or ∆ =



−δ amp; δ amp; 0 amp; 0

0 amp;−δ amp; δ amp; 0

0 amp; 0 amp;−δ amp; δ

0 amp; 0 amp; 0 amp;−δ


, where δ = 0.1.131

For figure 2, we restrict our consideration to a system of two patches, identical in all respects other132

than the parameter γ, which is set to either induce a steady state of coexistence (γ = 0.25 in popula-133

tion A) or cyclical coexistence (γ = 0.75 in population B). We then display three potential patterns134

of connection: A→ B (right column), B → A (left column), and the case of no migration between135

patches (middle column). Specifically, we set ∆ =

−δ amp; δ

0 amp;−δ

 ,∆ =

−δ amp; 0

δ amp;−δ

 , and ∆ =136

−δ amp; 0

0 amp;−δ

 ,respectively.137
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Finally, for XXXXX, we consider a system of three populations:A→ C ← B, or∆ =


−δ amp; 0 amp; δ

0 amp;−δ amp; δ

0 amp; 0 amp;−δ

 ,where138

populations A and C have γ = 0.25, but population B has γ = 0.75.139

3 Results140

3.1 Dynamics are dampened along chains in the metapopulation network141

We find that even when all populations share the same parameterizations and initial conditions,142

that populations further along network chains have dampened oscillatory dynamics compared to143

those they would exhibit in isolation (FIgure 1). This is likely due to the movement of (partially) im-144

mune individuals between the populations, increasing the proportion of specific and cross-reactively145

immune individuals in populations further along the chain. While infectious individuals move at an146

equal rate, the proportion of the population that is currently infectious at any given time is much147

smaller than the proportion with immunity.148

3.2 Dynamics propagate through metapopulation networks149

We find that in the case of a simple chain of populations, the dynamics of sink populations can150

be overridden by the dynamics of source populations (Figure 2). Interestingly, this is true both151

of cyclical dynamics overruling stable dynamics and vice versa. In the case of multiple source152

populations, cycles tend to dominate over stable dynamics. Importantly, this migration can allow153

for strain coexistence even in populations where the disease parameters would suggest extinction of154

one or more strains.155

3.3 There exists a dynamics hierarchy156

The issue of dynamics propagation gets more complicated when there are multiple, varying source157

populations for a given sink population. We find that there is a hierarchy of dynamics in their158

propagation through the network: cyclical dynamics overpower steady states and chaos overpowers159
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Figure 1: Connecting multiple populations with the same dynamics results in dampened clycles
in populations further down the chain. Here, populations are connected such that A → B →
C → D. Importantly, the mean level of immunity (cross-reactive and specific) increases in each
sequential population, while the mean level of currently infectious decreases. All populations have
parameters β = 40, σ = 10, µ = 0, δ = 0.1, γ = 0.75.

cycles, regardless of any imbalance in the relative contributions of the sources. Put another way,160

if just one of many source populations (or a small proportion of the total movement) has cyclical161

dynamics, the sink population will also have cyclical dynamics.162

Note that even though this parameterization would lead to steady state dynamics in population C163

in the absence of migration, we see cyclical dynamics being inherited from population164
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Figure 2: The effect of linking populations with different model parameterizations. While in isolation
(center column), population A has steady-state dynamics and population B has cyclical dynamics,
when the two populations are linked by migration, the sink population inherits the dynamics of the
source population (left and right columns). This is true regardless of the direction of the movement.
Populations have parameters β = 40, σ = 10, µ = 0, δ = 0.1 in common and γ = 0.25, 0.75
respectively.

4 Discussion165

4.1 Moving away from densities166

This modelling framework does not model the disease state of individuals directly, but rather fo-167

cuses on the proportion of the population that is/has been infected with each possible disease strain.168

Importantly, empirical movement data is usually not in the form of proportions, but rather num-169

bers of individuals moving (often at a specific time as well). To fully model the disease status of170

each individual in the metapopulation would result in an explosion of total number of differential171

equations due to the factorial expansion of possible disease histories.172

Alternatively, one could develop an individual based model. . .173
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4.2 Generalizing to larger network structures174

4.3 Dynamic & stochastic movement networks175

5 Supplementary Information176

5.1 Additional Figures (?)177

1. explanatory figures178

(a) basic model structure figure (perhaps analogous to figures in Lourenço et al. (2015) or179

Wikramaratna et al. (2013))180

(b) network structure differences (figure or table)181

2. results figures182

(a) figure of dynamics on “realistic” network structure183

3. supplementary figures184

(a) repeat results figures with different “applications” (see above)185

5.2 Key assumptions186

1. Individuals do not die, but are transferred off-site (?)187

2. all individuals equally likely to migrate188
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